We report neutron scattering measurements of the spectrum of magnetic excitations in the stripe-ordered phase of La2-xSrxNiO4 (x=0.275 and 1/3). The propagating spin excitations follow a similar dispersion relation for the two compositions, but the line widths are broader for x=0.275 than for x=1/3.
The stability of charge ordered phases is doping dependent, with different materials having particularly stable ordered phases. In the half filled charge ordered phases of the cuprates this occurs at one eighth doping, whereas in charge-stripe ordere
d La2-xSrxNiO4+delta there is enhanced stability at one third doping. In this paper we discuss the known details of the charge-stripe order in La2-xSrxNiO4+delta, and how these properties lead to the one third doping stability.
^139La nuclear magnetic resonance studies reveal markedly different magnetic properties of the two sites created by the charged domain wall formation in La_(5/3)Sr_(1/3)NiO_4. NMR is slow compared to neutron scattering; we observe a 30 K suppression
in magnetic ordering temperature indicating glassy behavior. Applied magnetic field reorients the in-plane ordered moments with respect to the lattice, but the relative orientation of the spins amongst themselves is stiff and broadly distributed.
The insulator-to-metal transition continues to be a challenging subject, especially when electronic correlations are strong. In layered compounds, such as La2-xSrxNiO4 and La2-xBaxCuO4, the doped charge carriers can segregate into periodically-spaced
charge stripes separating narrow domains of antiferromagnetic order. Although there have been theoretical proposals of dynamically fluctuating stripes, direct spectroscopic evidence of charge-stripe fluctuations has been lacking. Here we report the detection of critical lattice fluctuations, driven by charge-stripe correlations, in La2-xSrxNiO4 using inelastic neutron scattering. This scattering is detected at large momentum transfers where the magnetic form factor suppresses the spin fluctuation signal. The lattice fluctuations associated with the dynamic charge stripes are narrow in q and broad in energy. They are strongest near the charge stripe melting temperature. Our results open the way towards the quantitative theory of dynamic stripes and for directly detecting dynamical charge stripes in other strongly-correlated systems, including high-temperature superconductors such as La2-xSrxCuO4.
Polarized and unpolarized neutron inelastic scattering has been used to measure the spin excitations in the spin-charge-ordered stripe phase of La5/3Sr1/3NiO4. At high energies, sharp magnetic modes are observed characteristic of a static stripe latt
ice. The energy spectrum is described well by a linear spin wave model with intra- and inter-stripe exchange interactions between neighbouring Ni spins given by J = 15 +/- 1.5 meV and J = 7.5 +/- 1.5 meV respectively. A pronounced broadening of the magnetic fluctuations in a band between 10 meV and 25 meV is suggestive of coupling to collective motions of the stripe domain walls.
We report a detailed study of the temperature and magnetic-field dependence of the spin susceptibility for a single crystal of La(1.875)Ba(0.125)CuO(4). From a quantitative analysis, we find that the temperature-dependent anisotropy of the suscepti
bility, observed in both the paramagnetic and stripe-ordered phases, directly indicates that localized Cu moments dominate the magnetic response. A field-induced spin-flop transition provides further corroboration for the role of local moments. Contrary to previous analyses of data from polycrystalline samples, we find that a commonly-assumed isotropic and temperature-independent contribution from free carriers, if present, must be quite small. Our conclusion is strengthened by extending the quantitative analysis to include crystals of La(2-x)Ba(x)CuO(4) with x=0.095 and 0.155. On the basis of our results, we present a revised interpretation of the temperature and doping dependence of the spin susceptibility in La(2-x)(Sr,Ba)(x)CuO(4).