ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spin Liquid State of the Tb2Ti2O7 Pyrochlore Antiferromagnet: A Puzzling State of Affairs

235   0   0.0 ( 0 )
 نشر من قبل Matthew Enjalran
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pyrochlore antiferromagnet Tb2Ti2O7 has proven to be an enigma to experimentalists and theorists working on frustrated magnetic systems. The experimentally determined energy level structure suggests a local <111> Ising antiferromagnet at low temperatures, T < 10 K. An appropriate model then predicts a long-range ordered Q = 0 state below approximately 2 K. However, muon spin resonance experiments reveal a paramagnetic structure down to tens of milli-Kelvin. The importance of fluctuations out of the ground state effective Ising doublet has been recently understood, for the measured paramagnetic correlations can not be described without including the higher crystal field states. However, these fluctuations treated within the random phase approximation (RPA) fail to account for the lack of ordering in this system below 2 K. In this work, we briefly review the experimental evidence for the collective paramagnetic state of Tb2Ti2O7. The basic theoretical picture for this system is discussed, where results from classical spin models are used to motivate the investigation of quantum effects to lowest order via the RPA. Avenues for future experimental and theoretical work on Tb2Ti2O7 are presented.



قيم البحث

اقرأ أيضاً

Neutron scattering experiments on a polycrystalline sample of the frustrated pyrochlore magnet Tb2Ti2O7, which does not show any magnetic order down to 50 mK, have revealed that it shows condensation behavior below 0.4 K from a thermally fluctuating paramagnetic state to a spin-liquid ground-state with quantum spin fluctuations. Energy spectra change from quasielastic scattering to a continuum with a double-peak structure at energies of 0 and 0.8 K in the spin-liquid state. Specific heat shows an anomaly at the crossover temperature.
We present the structural characterization and low-temperature magnetism of the triangular-lattice delafossite NaYbO$_2$. Synchrotron x-ray diffraction and neutron scattering exclude both structural disorder and crystal-electric-field randomness, whe reas heat-capacity measurements and muon spectroscopy reveal the absence of magnetic order and persistent spin dynamics down to at least 70,mK. Continuous magnetic excitations with the low-energy spectral weight accumulating at the $K$-point of the Brillouin zone indicate the formation of a novel spin-liquid phase in a triangular antiferromagnet. This phase is gapless and shows a non-trivial evolution of the low-temperature specific heat. Our work demonstrates that NaYbO$_2$ practically gives the most direct experimental access to the spin-liquid physics of triangular antiferromagnets.
High resolution time-of-flight neutron scattering measurements on Tb2Ti2O7 reveal a rich low temperature phase diagram in the presence of a magnetic field applied along [110]. In zero field at T=0.4 K, terbium titanate is a highly correlated cooperat ive paramagnet with disordered spins residing on a pyrochlore lattice of corner-sharing tetrahedra. Application of a small field condenses much of the magnetic diffuse scattering, characteristic of the disordered spins, into a new Bragg peak characteristic of a polarized paramagnet. At higher fields, a magnetically ordered phase is induced, which supports spin wave excitations indicative of continuous, rather than Ising-like spin degrees of freedom.
We present new high resolution inelastic neutron scattering data on the candidate spin liquid Tb2Ti2O7. We find that there is no evidence for a zero field splitting of the ground state doublet within the 0.2 K resolution of the instrument. This resul t contrasts with a pair of recent works on Tb2Ti2O7 claiming that the spin liquid behavior can be attributed to a 2 K split singlet-singlet single-ion spectrum at low energies. We also reconsider the entropy argument presented in Chapuis {it et al.} as further evidence of a singlet-singlet crystal field spectrum. We arrive at the conclusion that estimates of the low temperature residual entropy drawn from heat capacity measurements are a poor guide to the single ion spectrum without understanding the nature of the correlations.
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak sing le-ion anisotropy of $|D|$/$J_1$ $sim$ 4.6% is quantitatively determined by fitting to the electron spin resonance (ESR) linewidth and susceptibility measured at high temperatures. The weak single-ion anisotropy interactions, possibly along with other perturbations, e.g. next-nearest-neighbor interactions, suppress the long-range magnetic order and render the system disordered, as evidenced by both the absence of any clear magnetic reflections in neutron diffraction and the presence of the dominant paramagnetic ESR signal down to 2 K ($sim$ 0.04$J_1$$S^2$), where the magnetic entropy is almost zero. The power-law behavior of specific heat ($C_m$ $sim$ $T^{2.2}$) observed below the freezing temperature of $T_f$ = 25 K in $alpha$-CrOOH or below $T_f$ = 22 K in $alpha$-CrOOD is insensitive to the external magnetic field, and thus is consistent with the theoretical prediction of a gapless U(1) Dirac quantum spin liquid (QSL) ground state. At low temperatures, the spectral weight of the low-energy continuous spin excitations accumulates at the K points of the Brillouin zone, e.g. $|mathbf{Q}|$ = 4$pi$/(3$a$), and the putative Dirac cones are clearly visible. Our work is a first step towards the understanding of the possible Dirac QSL ground state in this triangular-lattice magnet with $S$ = 3/2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا