ترغب بنشر مسار تعليمي؟ اضغط هنا

Field Induced Order and Spin Waves in the Pyrochlore Antiferromagnet Tb2Ti2O7

134   0   0.0 ( 0 )
 نشر من قبل Jacob Ruff
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High resolution time-of-flight neutron scattering measurements on Tb2Ti2O7 reveal a rich low temperature phase diagram in the presence of a magnetic field applied along [110]. In zero field at T=0.4 K, terbium titanate is a highly correlated cooperative paramagnet with disordered spins residing on a pyrochlore lattice of corner-sharing tetrahedra. Application of a small field condenses much of the magnetic diffuse scattering, characteristic of the disordered spins, into a new Bragg peak characteristic of a polarized paramagnet. At higher fields, a magnetically ordered phase is induced, which supports spin wave excitations indicative of continuous, rather than Ising-like spin degrees of freedom.



قيم البحث

اقرأ أيضاً

We report time-of-flight neutron scattering measurements of the magnetic spectrum of Tb3+ in Tb2Ti2O7. The data, which extend up to 120 meV and have calibrated intensity, enable us to consolidate and extend previous studies of the single-ion crystal field spectrum. We successfully refine a model for the crystal field potential in Tb2Ti2O7 without relying on data from other rare earth titanate pyrochlores, and we confirm that the ground state is a non-Kramers doublet with predominantly |+/-4> components. We compare the model critically with earlier models.
We report magnetic susceptibility, specific heat and muon spin relaxation (muSR) experiments on the triangular antiferromagnet La2Ca2MnO7 which develops a genuine two-dimensional, three-sublattice sqrt{3} times sqrt{3} magnetic order below T_N = 2.8 K. From the susceptibility and specific heat data an estimate of the exchange interaction is derived. A value for the spin-wave gap is obtained from the latter data. The analysis of a previously reported inelastic neutron scattering study yields values for the exchange and spin-wave gap compatible with the results obtained from macroscopic measurements. An appreciable entropy is still missing at 10 K that may be ascribed to intense short-range correlations. The critical paramagnetic fluctuations extend far above T_N, and can be partly understood in terms of two-dimensional spin-wave excitations. While no spontaneous muSR field is observed below T_N, persistent spin dynamics is found. Short-range correlations are detected in this temperature range. Their relation to a possible molecular spin substructure and the observed exotic spin fluctuations is discussed.
We investigate spin correlations in the dipolar Heisenberg antiferromagnet Gd2Sn2O7 using polarised neutron-scattering measurements in the correlated paramagnetic regime. Using Monte Carlo methods, we show that our data are sensitive to weak further- neighbour exchange interactions of magnitude ~0.5% of the nearest-neighbour interaction, and are compatible with either antiferromagnetic next-nearest neighbour interactions, or ferromagnetic third-neighbour interactions that connect spins across hexagonal loops. Calculations of the magnetic scattering intensity reveal rods of diffuse scattering along [111] reciprocal-space directions, which we explain in terms of strong antiferromagnetic correlations parallel to the set of <110> directions that connect a given spin with its nearest neighbours. Finally, we demonstrate that the spin correlations in Gd2Sn2O7 are highly anisotropic, and correlations parallel to third-neighbour separations are particularly sensitive to critical fluctuations associated with incipient long-range order.
In a ferromagnet, the spin excitations are the well-studied magnons. In frustrated quantum magnets, long-range magnetic order fails to develop despite a large exchange coupling between the spins. In contrast to the magnons in conventional magnets, th eir spin excitations are poorly understood. Are they itinerant or localized? Here we show that the thermal Hall conductivity $kappa_{xy}$ provides a powerful probe of spin excitations in the quantum spin ice pyrochlore Tb$_2$Ti$_2$O$_7$. The thermal Hall response is large even though the material is transparent. The Hall response arises from spin excitations with specific characteristics that distinguish them from magnons. At low temperature ($T<$ 1 K), the thermal conductivity imitates that of a dirty metal. Using the Hall angle, we construct a phase diagram showing how the excitations are suppressed by a magnetic field.
Neutron scattering measurements show the ferromagnetic XY pyrochlore Yb2Ti2O7 to display strong quasi-two dimensional (2D) spin correlations at low temperature, which give way to long range order (LRO) under the application of modest magnetic fields. Rods of scattering along < 111 > directions due to these 2D spin correlations imply a magnetic decomposition of the cubic pyrochlore system into decoupled kagome planes. A magnetic field of ~0.5 T applied along the [1-10] direction induces a transition to a 3D LRO state characterized by long-lived, dispersive spin waves. Our measurements map out a complex low temperature-field phase diagram for this exotic pyrochlore magnet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا