ترغب بنشر مسار تعليمي؟ اضغط هنا

Large deviations in spin-glass ground-state energies

60   0   0.0 ( 0 )
 نشر من قبل Barbieri Francesca
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ground-state energy E_0 of a spin glass is an example of an extreme statistic. We consider the large deviations of this energy for a variety of models when the number of spins N goes to infinity. In most cases, the behavior can be understood qualitatively, in particular with the help of semi-analytical results for hierarchical lattices. Particular attention is paid to the Sherrington-Kirkpatrick model; after comparing to the Tracy-Widom distribution which follows from the spherical approximation, we find that the large deviations give rise to non-trivial scaling laws with N.



قيم البحث

اقرأ أيضاً

In the Edwards-Anderson model of spin glasses with a bimodal distribution of bonds, the degeneracy of the ground state allows one to define a structure called backbone, which can be characterized by the rigid lattice (RL), consisting of the bonds tha t retain their frustration (or lack of it) in all ground states. In this work we have performed a detailed numerical study of the properties of the RL, both in two-dimensional (2D) and three-dimensional (3D) lattices. Whereas in 3D we find strong evidence for percolation in the thermodynamic limit, in 2D our results indicate that the most probable scenario is that the RL does not percolate. On the other hand, both in 2D and 3D we find that frustration is very unevenly distributed. Frustration is much lower in the RL than in its complement. Using equilibrium simulations we observe that this property can be found even above the critical temperature. This leads us to propose that the RL should share many properties of ferromagnetic models, an idea that recently has also been proposed in other contexts. We also suggest a preliminary generalization of the definition of backbone for systems with continuous distributions of bonds, and we argue that the study of this structure could be useful for a better understanding of the low temperature phase of those frustrated models.
We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid gr ound states, b) critical and ordered Neel states on bipartite infinite Cayley trees and c) critical and ordered quantum vector spin glass states on random graphs of fixed connectivity. We argue, in consonance with a previous analysis, that all phases are characterized by gaps to local excitations. The spin glass states we report arise from random long ranged loops which frustrate Neel ordering despite the lack of randomness in the coupling strengths.
Across many scientific and engineering disciplines, it is important to consider how much the output of a given system changes due to perturbations of the input. Here, we study the robustness of the ground states of $pm J$ spin glasses on random graph s to flips of the interactions. For a sparse graph, a dense graph, and the fully connected Sherrington-Kirkpatrick model, we find relatively large sets of interactions that generate the same ground state. These sets can themselves be analyzed as sub-graphs of the interaction domain, and we compute many of their topological properties. In particular, we find that the robustness of these sub-graphs is much higher than one would expect from a random model. Most notably, it scales in the same logarithmic way with the size of the sub-graph as has been found in genotype-phenotype maps for RNA secondary structure folding, protein quaternary structure, gene regulatory networks, as well as for models for genetic programming. The similarity between these disparate systems suggests that this scaling may have a more universal origin.
We perform numerical simulations, including parallel tempering, on the Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the location of the transition and the value of the critical exponents. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the random permutation Potts glass.
254 - J. H. Pixley , A. P. Young 2008
We study the XY spin glass by large-scale Monte Carlo simulations for sizes up to 24^3, down to temperatures below the transition temperature found in earlier work. The data for the larger sizes show more marginal behavior than that for the smaller s izes indicating that the lower critical dimension is close to, and possibly equal to three. We find that the spins and chiralities behave in a very similar manner. We also address the optimal ratio of over-relaxation to Metropolis sweeps in the simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا