ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground-state topology of the Edwards-Anderson +/-J spin glass model

133   0   0.0 ( 0 )
 نشر من قبل Federico Rom\\'a
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the Edwards-Anderson model of spin glasses with a bimodal distribution of bonds, the degeneracy of the ground state allows one to define a structure called backbone, which can be characterized by the rigid lattice (RL), consisting of the bonds that retain their frustration (or lack of it) in all ground states. In this work we have performed a detailed numerical study of the properties of the RL, both in two-dimensional (2D) and three-dimensional (3D) lattices. Whereas in 3D we find strong evidence for percolation in the thermodynamic limit, in 2D our results indicate that the most probable scenario is that the RL does not percolate. On the other hand, both in 2D and 3D we find that frustration is very unevenly distributed. Frustration is much lower in the RL than in its complement. Using equilibrium simulations we observe that this property can be found even above the critical temperature. This leads us to propose that the RL should share many properties of ferromagnetic models, an idea that recently has also been proposed in other contexts. We also suggest a preliminary generalization of the definition of backbone for systems with continuous distributions of bonds, and we argue that the study of this structure could be useful for a better understanding of the low temperature phase of those frustrated models.



قيم البحث

اقرأ أيضاً

We present a detailed proof of a previously announced result (C.M. Newman and D.L. Stein, Phys. Rev. Lett. v. 84, pp. 3966--3969 (2000)) supporting the absence of multiple (incongruent) ground state pairs for 2D Edwards-Anderson spin glasses (with ze ro external field and, e.g., Gaussian couplings): if two ground state pairs (chosen from metastates with, e.g., periodic boundary conditions) on the infinite square lattice are distinct, then the dual bonds where they differ form a single doubly-infinite, positive-density domain wall. It is an open problem to prove that such a situation cannot occur (or else to show --- much less likely in our opinion --- that it indeed does happen) in these models. Our proof involves an analysis of how (infinite-volume) ground states change as (finitely many) couplings vary, which leads us to a notion of zero-temperature excitation metastates, that may be of independent interest.
A recent interesting paper [Yucesoy et al. Phys. Rev. Lett. 109, 177204 (2012), arXiv:1206:0783] compares the low-temperature phase of the 3D Edwards-Anderson (EA) model to its mean-field counterpart, the Sherrington-Kirkpatrick (SK) model. The autho rs study the overlap distributions P_J(q) and conclude that the two models behave differently. Here we notice that a similar analysis using state-of-the-art, larger data sets for the EA model (generated with the Janus computer) leads to a very clear interpretation of the results of Yucesoy et al., showing that the EA model behaves as predicted by the replica symmetry breaking (RSB) theory.
We study the sample-to-sample fluctuations of the overlap probability densities from large-scale equilibrium simulations of the three-dimensional Edwards-Anderson spin glass below the critical temperature. Ultrametricity, Stochastic Stability and Ove rlap Equivalence impose constraints on the moments of the overlap probability densities that can be tested against numerical data. We found small deviations from the Ghirlanda-Guerra predictions, which get smaller as system size increases. We also focus on the shape of the overlap distribution, comparing the numerical data to a mean-field-like prediction in which finite-size effects are taken into account by substituting delta functions with broad peaks
Domain-wall free-energy $delta F$, entropy $delta S$, and the correlation function, $C_{rm temp}$, of $delta F$ are measured independently in the four-dimensional $pm J$ Edwards-Anderson (EA) Ising spin glass. The stiffness exponent $theta$, the frac tal dimension of domain walls $d_{rm s}$ and the chaos exponent $zeta$ are extracted from the finite-size scaling analysis of $delta F$, $delta S$ and $C_{rm temp}$ respectively well inside the spin-glass phase. The three exponents are confirmed to satisfy the scaling relation $zeta=d_{rm s}/2-theta$ derived by the droplet theory within our numerical accuracy. We also study bond chaos induced by random variation of bonds, and find that the bond and temperature perturbations yield the universal chaos effects described by a common scaling function and the chaos exponent. These results strongly support the appropriateness of the droplet theory for the description of chaos effect in the EA Ising spin glasses.
The stability of the spin-glass phase against a magnetic field is studied in the three and four dimensional Edwards-Anderson Ising spin glasses. Effective couplings and effective fields associated with length scale L are measured by a numerical domai n-wall renormalization group method. The results obtained by scaling analysis of the data strongly indicate the existence of a crossover length beyond which the spin-glass order is destroyed by field H. The crossover length well obeys a power law of H which diverges as H goes to zero but remains finite for any non-zero H, implying that the spin-glass phase is absent even in an infinitesimal field. These results are well consistent with the droplet theory for short-range spin glasses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا