ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization of a pair of bound particles in a random potential

162   0   0.0 ( 0 )
 نشر من قبل M. Turek
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the localization length of a pair of two attractively bound particles moving in a one-dimensional random potential. We show in which way it depends on the interaction potential between the constituents of this composite particle. For a pair with many bound states N the localization length is proportional to N, independently of the form of the two particle interaction. For the case of two bound states we present an exact solution for the corresponding Fokker-Planck equation and demonstrate that the localization length depends sensitively on the shape of the interaction potential and the symmetry of the bound state wave functions.

قيم البحث

اقرأ أيضاً

109 - Wonsang Lee , Joonhyun Yeo 2020
We construct a dynamical field theory for noninteracting Brownian particles in the presence of a quenched Gaussian random potential. The main variable for the field theory is the density fluctuation which measures the difference between the local den sity and its average value. The average density is spatially inhomogeneous for given realization of the random potential. It becomes uniform only after averaged over the disorder configurations. We develop the diagrammatic perturbation theory for the density correlation function and calculate the zero-frequency component of the response function exactly by summing all the diagrams contributing to it. From this exact result and the fluctuation dissipation relation, which holds in an equilibrium dynamics, we find that the connected density correlation function always decays to zero in the long-time limit for all values of disorder strength implying that the system always remains ergodic. This nonperturbative calculation relies on the simple diagrammatic structure of the present field theoretical scheme. We compare in detail our diagrammatic perturbation theory with the one used in a recent paper [B. Kim, M. Fuchs and V. Krakoviack, J. Stat. Mech. (2020) 023301], which uses the density fluctuation around the uniform average, and discuss the difference in the diagrammatic structures of the two formulations.
We propose the weak localization of magnons in a disordered two-dimensional antiferromagnet. We derive the longitudinal thermal conductivity $kappa_{xx}$ for magnons of a disordered Heisenberg antiferromagnet in the linear-response theory with the li near-spin-wave approximation. We show that the back scattering of magnons is enhanced critically by the particle-particle-type multiple impurity scattering. This back scattering causes a logarithmic suppression of $kappa_{xx}$ with the length scale in two dimensions. We also argue a possible effect of inelastic scattering on the temperature dependence of $kappa_{xx}$. This weak localization is useful to control turning the magnon thermal current on and off.
We examine bosons hopping on a one-dimensional lattice in the presence of a random potential at zero temperature. Bogoliubov excitations of the Bose-Einstein condensate formed under such conditions are localized, with the localization length divergin g at low frequency as $ell(omega)sim 1/omega^alpha$. We show that the well known result $alpha=2$ applies only for sufficiently weak random potential. As the random potential is increased beyond a certain strength, $alpha$ starts decreasing. At a critical strength of the potential, when the system of bosons is at the transition from a superfluid to an insulator, $alpha=1$. This result is relevant for understanding the behavior of the atomic Bose-Einstein condensates in the presence of random potential, and of the disordered Josephson junction arrays.
We reconsider the theory of magnetoresistance in hopping semiconductors. First, we have shown that the random potential of the background impurities affects significantly preexponential factor of the tunneling amplitude which becomes to be a short-ra nge one in contrast to the long-range one for purely Coulomb hopping centers. This factor to some extent suppresses the negative interference magnetoresistance and can lead to its decrease with temperature decrease which is in agreement with earlier experimental observations. We have also extended the theoretical models of positive spin magnetoresistance, in particular, related to a presence of doubly occupied states (corresponding to the upper Hubbard band) to the case of acceptor states in 2D structures. We have shown that this mechanism can dominate over classical wave-shrinkage magnetoresistance at low temperatures. Our results are in semi-quantitative agreement with experimental data.
160 - Alon Beck , Moshe Goldstein 2020
The quest for nonequilibrium quantum phase transitions is often hampered by the tendency of driving and dissipation to give rise to an effective temperature, resulting in classical behavior. Could this be different when the dissipation is engineered to drive the system into a nontrivial quantum coherent steady state? In this work we shed light on this issue by studying the effect of disorder on recently-introduced dissipation-induced Chern topological states, and examining the eigenmodes of the Hermitian steady state density matrix or entanglement Hamiltonian. We find that, similarly to equilibrium, each Landau band has a single delocalized level near its center. However, using three different finite size scaling methods we show that the critical exponent $ u$ describing the divergence of the localization length upon approaching the delocalized state is significantly different from equilibrium if disorder is introduced into the non-dissipative part of the dynamics. This indicates a different type of nonequilibrium quantum critical universality class accessible in cold-atom experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا