ﻻ يوجد ملخص باللغة العربية
We study the localization length of a pair of two attractively bound particles moving in a one-dimensional random potential. We show in which way it depends on the interaction potential between the constituents of this composite particle. For a pair with many bound states N the localization length is proportional to N, independently of the form of the two particle interaction. For the case of two bound states we present an exact solution for the corresponding Fokker-Planck equation and demonstrate that the localization length depends sensitively on the shape of the interaction potential and the symmetry of the bound state wave functions.
We construct a dynamical field theory for noninteracting Brownian particles in the presence of a quenched Gaussian random potential. The main variable for the field theory is the density fluctuation which measures the difference between the local den
We propose the weak localization of magnons in a disordered two-dimensional antiferromagnet. We derive the longitudinal thermal conductivity $kappa_{xx}$ for magnons of a disordered Heisenberg antiferromagnet in the linear-response theory with the li
We examine bosons hopping on a one-dimensional lattice in the presence of a random potential at zero temperature. Bogoliubov excitations of the Bose-Einstein condensate formed under such conditions are localized, with the localization length divergin
We reconsider the theory of magnetoresistance in hopping semiconductors. First, we have shown that the random potential of the background impurities affects significantly preexponential factor of the tunneling amplitude which becomes to be a short-ra
The quest for nonequilibrium quantum phase transitions is often hampered by the tendency of driving and dissipation to give rise to an effective temperature, resulting in classical behavior. Could this be different when the dissipation is engineered