ﻻ يوجد ملخص باللغة العربية
The stability of doubly quantized vortices in dilute Bose-Einstein condensates of 23Na is examined at zero temperature. The eigenmode spectrum of the Bogoliubov equations for a harmonically trapped cigar-shaped condensate is computed and it is found that the doubly quantized vortex is spectrally unstable towards dissection into two singly quantized vortices. By numerically solving the full three-dimensional time-dependent Gross-Pitaevskii equation, it is found that the two singly quantized vortices intertwine before decaying. This work provides an interpretation of recent experiments [A. E. Leanhardt et al. Phys. Rev. Lett. 89, 190403 (2002)].
Doubly quantized vortices were topologically imprinted in $|F=1>$ $^{23}$Na condensates, and their time evolution was observed using a tomographic imaging technique. The decay into two singly quantized vortices was characterized and attributed to dyn
We have theoretically investigated Kelvin waves of quantized vortex lines in trapped Bose-Einstein condensates. Counterrotating perturbation induces an elliptical instability to the initially straight vortex line, driven by a parametric resonance bet
The complete low-energy collective-excitation spectrum of vortex lattices is discussed for rotating Bose-Einstein condensates (BEC) by solving the Bogoliubov-de Gennes (BdG) equation, yielding, e.g., the Tkachenko mode recently observed at JILA. The
The splitting instability of a doubly-quantized vortex in the BEC-BCS crossover of a superfluid Fermi gas is investigated by means of a low-energy effective field theory. Our linear stability analysis and non-equilibrium numerical simulations reveal
We study the formation of large vortex aggregates in a rapidly rotating dilute-gas Bose-Einstein condensate. When we remove atoms from the rotating condensate with a tightly focused, resonant laser, the density can be locally suppressed, while fast c