ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental Curie temperature limit in ferromagnetic GaMnAs

72   0   0.0 ( 0 )
 نشر من قبل Tomasz Wojtowicz
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide experimental evidence that the upper limit of ~110 K commonly observed for the Curie temperature T_C of Ga(1-x)Mn(x)As is caused by the Fermi-level-induced hole saturation. Ion channeling, electrical and magnetization measurements on a series of Ga(1-x-y)Mn(x)Be(y)As layers show a dramatic increase of the concentration of Mn interstitials accompanied by a reduction of T_C with increasing Be concentration, while the free hole concentration remains relatively constant at ~5x10^20 cm^-3. These results indicate that the concentrations of free holes and ferromagnetically active Mn spins are governed by the position of the Fermi level, which controls the formation energy of compensating interstitial Mn donors.



قيم البحث

اقرأ أيضاً

165 - A. Koeder , W. Limmer , S. Frank 2003
We report on an enhancement of the Curie temperature in GaMnAs/InGaMnAs superlattices grown by low-temperature molecular beam epitaxy, which is due to thin InGaMnAs or InGaAs films embedded into the GaMnAs layers. The pronounced increase of the Curie temperature is strongly correlated to the In concentration in the embedded layers. Curie temperatures up to 110 K are observed in such structures compared to 60 K in GaMnAs single layers grown under the same conditions. A further increase in T$_C$ up to 130 K can be achieved using post-growth annealing at temperatures near the growth temperature. Pronounced thickness fringes in the high resolution X-ray diffraction spectra indicate good crystalline quality and sharp interfaces in the structures.
98 - A. Koeder , S. Frank , W. Schoch 2002
We report on detailed investigations of the electronic and magnetic properties of ferromagnetic GaMnAs layers, which have been fabricated by low-temperature molecular-beam epitaxy. Superconducting quantum interference device measurements reveal a dec rease of the Curie temperature from the surface to the GaMnAs/GaAs interface. While high resolution x-ray diffraction clearly shows a homogeneous Mn distribution, a pronounced decrease of the carrier concentration from the surface towards the GaMnAs/GaAs interface has been found by Raman spectroscopy as well as electrochemical capacitance-voltage profiling. The gradient in Curie temperature seems to be a general feature of GaMnAs layers grown at low-temperature. Possible explanations are discussed.
We demonstrate the manipulation of the Curie temperature of buried layers of the ferromagnetic semiconductor (Ga,Mn)As using nanolithography to enhance the effect of annealing. Patterning the GaAs-capped ferromagnetic layers into nanowires exposes fr ee surfaces at the sidewalls of the patterned (Ga,Mn)As layers and thus allows the removal of Mn interstitials using annealing. This leads to an enhanced Curie temperature and reduced resistivity compared to unpatterned samples. For a fixed annealing time, the enhancement of the Curie temperature is larger for narrower nanowires.
We investigate the magnetic and magneto-optic properties of epitaxial GaN:Gd layers as a function of the external magnetic field and temperature. An unprecedented magnetic moment is observed in this diluted magnetic semiconductor. The average value o f the moment per Gd atom is found to be as high as 4000 mub as compared to its atomic moment of 8 mub. The long-range spin-polarization of the GaN matrix by Gd is also reflected in the circular polarization of magneto-photoluminescence measurements. Moreover, the materials system is found to be ferromagnetic above room temperature in the entire concentration range under investigation (7$times10^{15}$ to 2$times10^{19}$ cm$^{-3}$). We propose a phenomenological model to understand the macroscopic magnetic behavior of the system. Our study reveals a close connection between the observed ferromagnetism and the colossal magnetic moment of Gd.
262 - C. Sun , J. Kono , Y. Cho 2009
We have performed a systematic magneto-optical Kerr spectroscopy study of GaMnAs with varying Mn densities as a function of temperature, magnetic field, and photon energy. Unlike previous studies, the magnetization easy axis was perpendicular to the sample surface, allowing us to take remanent polar Kerr spectra in the absence of an external magnetic field. The remanent Kerr angle strongly depended on the photon energy, exhibiting a large positive peak at $sim1.7$ eV. This peak increased in intensity and blue-shifted with Mn doping and further blue-shifted with annealing. Using a 30-band ${bf kcdot p}$ model with antiferromagnetic $s,p$-$d$ exchange interaction, we calculated the dielectric tensor of GaMnAs in the interband transition region, assuming that our samples are in the metallic regime and the impurity band has merged with the valence band. We successfully reproduced the observed spectra without emph{ad hoc} introduction of the optical transitions originated from impurity states in the band gap. These results lead us to conclude that above-bandgap magneto-optical Kerr rotation in ferromagnetic GaMnAs is predominantly determined by interband transitions between the conduction and valence bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا