ﻻ يوجد ملخص باللغة العربية
We investigate the magnetic and magneto-optic properties of epitaxial GaN:Gd layers as a function of the external magnetic field and temperature. An unprecedented magnetic moment is observed in this diluted magnetic semiconductor. The average value of the moment per Gd atom is found to be as high as 4000 mub as compared to its atomic moment of 8 mub. The long-range spin-polarization of the GaN matrix by Gd is also reflected in the circular polarization of magneto-photoluminescence measurements. Moreover, the materials system is found to be ferromagnetic above room temperature in the entire concentration range under investigation (7$times10^{15}$ to 2$times10^{19}$ cm$^{-3}$). We propose a phenomenological model to understand the macroscopic magnetic behavior of the system. Our study reveals a close connection between the observed ferromagnetism and the colossal magnetic moment of Gd.
We demonstrate the manipulation of the Curie temperature of buried layers of the ferromagnetic semiconductor (Ga,Mn)As using nanolithography to enhance the effect of annealing. Patterning the GaAs-capped ferromagnetic layers into nanowires exposes fr
Bimetal transition iodides in two-dimensional scale provide an interesting idea to combine a set of single-transition-metal ferromagnetic semiconductors together. Motivated by structural engineering on bilayer CrI$_3$ to tune its magnetism and works
We provide experimental evidence that the upper limit of ~110 K commonly observed for the Curie temperature T_C of Ga(1-x)Mn(x)As is caused by the Fermi-level-induced hole saturation. Ion channeling, electrical and magnetization measurements on a ser
We present high-temperature ferromagnetism and large magnetic anisotropy in heavily Fe-doped n-type ferromagnetic semiconductor (In1-x,Fex)Sb (x = 20 - 35%) thin films grown by low-temperature molecular beam epitaxy. The (In1-x,Fex)Sb thin films with
The quantum anomalous Hall effect (QAHE) that emerges under broken time-reversal symmetry in topological insulators (TI) exhibits many fascinating physical properties for potential applications in nano-electronics and spintronics. However, in transit