ﻻ يوجد ملخص باللغة العربية
We present an X-ray diffraction study of the quasi-2D conductors a-(BEDTTTF)2MHg(SCN), with M=K and Rb. They exhibit a phase transition of the density wave type at TDW=8-10K and 12-13K respectively, evidenced by magnetoresistivity, specific heat, NMR and Hall constant measurements. The structural study shows the presence of satellite reflections already at ambient temperature. The related modulation is incommensurate with multiple harmonics. For some of the compounds studied, the intensity of the satellite reflections strongly increases below TDW. According to Fermi surface (FS) calculations, the wave vector of the structural modulation achieves a quite good nesting of the global FS. This suggests a coupling of the modulation with the electronic degrees of freedom leading to a charge density wave ground state.
Single crystals of the organic charge-transfer salts $alpha$-(BEDT-TTF)$_2M$Hg(SCN)$_4$ have been studied using Hall-potential measurements ($M=$K) and magnetization experiments ($M$ = K, Rb). The data show that two types of screening currents occur
The low-temperature charge-density-wave (CDW) state in the layered organic metals $alpha $-(BEDT-TTF)$_2$MHg(SCN)$_4$ has been studied by means of the Shubnikov -- de Haas and de Haas -- van Alphen effects. In addition to the dominant alpha-frequency
The low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood
In spite of extensive experimental studies of the angular dependent magnetoresistance (ADMR) of the low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 about a decade ago, the nature of LTP remains elusive. Here we present a new study of ADMR
The infrared spectra of the quasi-two-dimensional organic conductors $alpha$-(BEDT-TTF)$_2$$M$Hg(SCN)$_4$ ($M$ = NH$_4$, Rb, Tl) were measured in the range from 50 to 7000 cm down to low temperatures in order to explore the influence of electronic co