ﻻ يوجد ملخص باللغة العربية
In spite of extensive experimental studies of the angular dependent magnetoresistance (ADMR) of the low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 about a decade ago, the nature of LTP remains elusive. Here we present a new study of ADMR of LTP in alpha-(ET)_2 salts assuming that LTP is unconventional charge density wave (UCDW). In the presence of magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to striking ADMR in UCDW. The present model appears to account for many existing ADMR data of alpha-(BEDT-TTF)_2KHg(SCN)_4 remarkably well.
The low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood
The dielectric constant and ac conductivity have been measured for the layered organic conductor theta-(BEDT-TTF)_2CsZn(SCN)_4 along the out-of-plane direction, which show a relaxation behavior similar to those in the charge-density-wave conductor. M
The low-temperature charge-density-wave (CDW) state in the layered organic metals $alpha $-(BEDT-TTF)$_2$MHg(SCN)$_4$ has been studied by means of the Shubnikov -- de Haas and de Haas -- van Alphen effects. In addition to the dominant alpha-frequency
Since the first observation of weak ferromagnetism in the charge-transfer salt kappa-(BEDT-TTF)2-Cu[N(CN)2]Cl [U. Welp et al., Phys. Rev. Lett. 69, 840 (1992)], no further evidence of ferromagnetism in this class of organic materials has been reporte
The infrared spectra of the quasi-two-dimensional organic conductors $alpha$-(BEDT-TTF)$_2$$M$Hg(SCN)$_4$ ($M$ = NH$_4$, Rb, Tl) were measured in the range from 50 to 7000 cm down to low temperatures in order to explore the influence of electronic co