ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable-range hopping conductivity in the copper-oxygen chains of La_3Sr_3Ca_8Cu_24O_41

73   0   0.0 ( 0 )
 نشر من قبل Tomislav Vuletic
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the spin chain/ladder compound La_3Sr_3Ca_8Cu_24O_41 is an insulator with hopping transport along the chains. In the temperature range 35 - 280 K, DC conductivity sigma_{DC}(T) follows Motts law of variable-range hopping conduction; the frequency dependence has the form sigma( u, T) = sigma_{DC}(T) + A(T) u^{s}, where s approx 1. The conduction mechanism changes from variable-range hopping to nearest-neighbor hopping around T_{c} =300 K. The chain array thus behaves like a one-dimensional disordered system. Disorder is due to random structural distortions of chains induced by irregular coordination of the La/Sr/Ca ions.



قيم البحث

اقرأ أيضاً

The behavior of a disordered amorphous thin film of superconducting Indium Oxide has been studied as a function of temperature and magnetic field applied perpendicular to its plane. A superconductor-insulator transition has been observed, though the isotherms do not cross at a single point. The curves of resistance vs. temperature on the putative superconducting side of this transition, where the resistance decreases with decreasing temperature, obey two-dimensional Mott variable-range hopping of vortices over wide ranges of temperature and resistance. To estimate the parameters of hopping, the film is modeled as a granular system and the hopping of vortices is treated in a manner analogous to hopping of charges. The reason the long range interaction between vortices over the range of magnetic fields investigated does not lead to a stronger variation of resistance with temperature than that of two-dimensional Mott variable-range hopping remains unresolved.
211 - E. Khatami , A. Macridin , 2009
We study the effect of long-range hoppings on Tc for the two-dimensional (2D) Hubbard model with and without Holstein phonons using parameters evaluated from band-structure calculations for cuprates. Employing the dynamical cluster approximation (DCA ) with a quantum Monte Carlo (QMC) cluster solver for a 4-site cluster, we observe that without phonons, the long-range hoppings, t and t, generally suppress Tc. We argue that this trend remains valid for larger clusters. In the presence of the Holstein phonons, a finite t enhances Tc in the under-doped region for the hole-doped system, consistent with local-density approximation (LDA) calculations and experiment. This is interpreted through the suppression of antiferromagnetic (AF) correlations and the interplay between polaronic effects and the antiferromagnetism.
166 - L.B. Ioffe , B.Z. Spivak 2013
We predict the universal power law dependence of localization length on magnetic field in the strongly localized regime. This effect is due to the orbital quantum interference. Physically, this dependence shows up in an anomalously large negative mag netoresistance in the hopping regime. The reason for the universality is that the problem of the electron tunneling in a random media belongs to the same universality class as directed polymer problem even in the case of wave functions of random sign. We present numerical simulations which prove this conjecture. We discuss the existing experiments that show anomalously large magnetoresistance. We also discuss the role of localized spins in real materials and the spin polarizing effect of magnetic field.
The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids (Fig 1a). Virtual transitions of electrons between adjacent planar Cu and O atoms, occurrin g at a rate $t/{hbar}$ and across the charge-transfer energy gap E, generate superexchange spin-spin interactions of energy $Japprox4t^4/E^3$ in an antiferromagnetic correlated-insulator state1. Hole doping the CuO2 plane disrupts this magnetic order while perhaps retaining superexchange interactions, thus motivating a hypothesis of spin-singlet electron-pair formation at energy scale J as the mechanism of high-temperature superconductivity. Although the response of the superconductors electron-pair wavefunction $Psiequiv<c_uparrow c_downarrow>$ to alterations in E should provide a direct test of such hypotheses, measurements have proven impracticable. Focus has turned instead to the distance ${delta}$ between each Cu atom and the O atom at the apex of its CuO5 pyramid. Varying ${delta}$ should alter the Coulomb potential at the planar Cu and O atoms, modifying E and thus J, and thereby controlling ${Psi}$ in a predictable manner. Here we implement atomic-scale imaging of E and ${Psi}$, both as a function of the periodic modulation in ${delta}$ that occurs naturally in $Bi_2Sr_2CaCu_2O_{8+x}$. We demonstrate that the responses of E and ${Psi}$ to varying ${delta}$, and crucially those of ${Psi}$ to the varying E, conform to theoretical predictions. These data provide direct atomic-scale verification that charge-transfer superexchange is key to the electron-pairing mechanism in the hole-doped cuprate superconductor ${Bi_2Sr_2CaCu_2O_{8+x}}$.
101 - M. Franz 2001
We formulate an effective low energy theory for the fermionic excitations in d-wave superconductors in the presence of periodic vortex lattices. These can be modeled by an effective free Dirac Hamiltonian with renormalized velocities and possibly a s mall mass term. In the presence of random nonmagnetic impurities this will result in universal (i.e. field and disorder strength independent) thermal and spin conductivities with values different from those occurring in the Meissner state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا