ﻻ يوجد ملخص باللغة العربية
We study the effect of long-range hoppings on Tc for the two-dimensional (2D) Hubbard model with and without Holstein phonons using parameters evaluated from band-structure calculations for cuprates. Employing the dynamical cluster approximation (DCA) with a quantum Monte Carlo (QMC) cluster solver for a 4-site cluster, we observe that without phonons, the long-range hoppings, t and t, generally suppress Tc. We argue that this trend remains valid for larger clusters. In the presence of the Holstein phonons, a finite t enhances Tc in the under-doped region for the hole-doped system, consistent with local-density approximation (LDA) calculations and experiment. This is interpreted through the suppression of antiferromagnetic (AF) correlations and the interplay between polaronic effects and the antiferromagnetism.
We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice, including on-site (U) and nearest-neighbor (V) interactions, at weak couplings. We show that the charge-density-wave phase that is known to occur at half-fi
We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter regime in density, interaction, and second
We show that the resistivity in each phase of the High-Tc cuprates is a special case of a general expression derived from the Kubo formula. We obtain, in particular, the T-linear behavior in the strange metal (SM) and upper pseudogap (PG) phases, the
We take advantage of the connection between the free carrier optical conductivity and the glue function in the normal state, to reconstruct from the infrared optical conductivity the glue-spectrum of ten different high-Tc cuprates revealing a robust
We investigate the effects of an extended Bose-Hubbard model with a long range hopping term on the Mott insulator-superfluid quantum phase transition. We consider the effects of a power law decaying hopping term and show that the Mott phase is shrink