ﻻ يوجد ملخص باللغة العربية
We have grown cubic centimetre-size crystals of YBa2Cu3Ox suitable for neutron studies, by a top-seeded melt-growth technique. Growth conditions were optimized with an eye toward maximizing phase purity. It was found that the addition of 2% Y2BaCuO5 and 0.5% Pt (by mass) were required to prevent melt loss and to obtain the highest crystallinity. A neutron diffraction study on a mosaic of six such crystals found that the final Y2BaCuO5 concentration was 5%, while other impurity phases comprised less than 1% by volume. The oxygen content was set to x=6.5, the crystals were detwinned and then carefully annealed to give the well-ordered ortho-II phase. The neutron study determined that 70% of the mosaics volume was in the majority orthorhomic domain. The neutron (0,0,6) and (1,1,0) rocking curve widths were ~1 degree per crystal and ~2.2 degrees for the mosaic, and the oxygen chain correlation lengths were >100 A in the a- and b-directions and ~50 A in the c-direction.
We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt-growth dynamics and fine-scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect
We report magnetoresistivity measurements on strongly underdoped YBa_2Cu_3O_x (x=6.25, 6.36) single crystals in applied magnetic fields H || c-axis. We identify two different contributions to both in-plane and out-of-plane magnetoresistivities. The f
Structural studies on Dy-substituted La-2125 type superconductors have been carried out by neutron diffraction experiments at room temperature using a monochromatic neutron beam of wavelength lambda = 1.249 Angstroms. A series of samples with La2-xDy
Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ (0$leq x leq$1.00) single crystals with high-quality have been grown successfully using the travelling-solvent floating-zone technique. The patterns of X-ray diffraction suggest high crystalline quality of the sa
We report successful growth of flux free large single crystals of superconducting FeSe1/2Te1/2 with typical dimensions of up to few cm. The AC and DC magnetic measurements revealed the superconducting transition temperature (Tc) value of around 11.5K