ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple nodeless superconducting gaps in optimally-doped SrTi$_{1-x}$Nb$_{x}$O$_{3}$

130   0   0.0 ( 0 )
 نشر من قبل Kamran Behnia
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first study of thermal conductivity in superconducting SrTi$_{1-x}$Nb$_{x}$O$_{3}$, sufficiently doped to be near its maximum critical temperature. The bulk critical temperature, determined by the jump in specific heat, occurs at a significantly lower temperature than the resistive T$_{c}$. Thermal conductivity, dominated by the electron contribution, deviates from its normal-state magnitude at bulk T$_{c}$, following a Bardeen-Rickayzen-Tewordt (BRT) behavior, expected for thermal transport by Bogoliubov excitations. Absence of a T-linear term at very low temperatures rules out the presence of nodal quasi-particles. On the other hand, the field dependence of thermal conductivity points to the existence of at least two distinct superconducting gaps. We conclude that optimally-doped strontium titanate is a multigap nodeless superconductor.



قيم البحث

اقرأ أيضاً

121 - Y. Xu , S. Johr , L. Das 2020
By using mostly the muon-spin rotation/relaxation ($mu$SR) technique, we investigate the superconductivity (SC) of Nb$_5$Ir$_{3-x}$Pt$_x$O ($x = 0$ and 1.6) alloys, with $T_c = 10.5$ K and 9.1 K, respectively. At a macroscopic level, their supercondu ctivity was studied by electrical resistivity, magnetization, and specific-heat measurements. In both compounds, the electronic specific heat and the low-temperature superfluid density data suggest a nodeless SC. The superconducting gap value and the specific heat discontinuity at $T_c$ are larger than that expected from the Bardeen-Cooper-Schrieffer theory in the weak-coupling regime, indicating strong-coupling superconductivity in the Nb$_5$Ir$_{3-x}$Pt$_x$O family. In Nb$_5$Ir$_3$O, multigap SC is evidenced by the field dependence of the electronic specific heat coefficient and the superconducting Gaussian relaxation rate, as well as by the temperature dependence of the upper critical field. Pt substitution suppresses one of the gaps, and Nb$_5$Ir$_{1.4}$Pt$_{1.6}$O becomes a single-gap superconductor. By combining our extensive experimental results, we provide evidence for a multiple- to single-gap SC crossover in the Nb$_5$Ir$_{3-x}$Pt$_x$O family.
SrTiO$_{3}$, a quantum paraelectric, becomes a metal with a superconducting instability after removal of an extremely small number of oxygen atoms. It turns into a ferroelectric upon substitution of a tiny fraction of strontium atoms with calcium. Th e two orders may be accidental neighbors or intimately connected, as in the picture of quantum critical ferroelectricity. Here, we show that in Sr$_{1-x}$Ca$_{x}$TiO$_{3-delta}$ ($0.002<x<0.009$, $delta<0.001$) the ferroelectric order coexists with dilute metallicity and its superconducting instability in a finite window of doping. At a critical carrier density, which scales with the Ca content, a quantum phase transition destroys the ferroelectric order. We detect an upturn in the normal-state scattering and a significant modification of the superconducting dome in the vicinity of this quantum phase transition. The enhancement of the superconducting transition temperature with calcium substitution documents the role played by ferroelectric vicinity in the precocious emergence of superconductivity in this system, restricting possible theoretical scenarios for pairing.
We use neutron powder diffraction to study on the non-superconducting phases of ThFeAsN$_{1-x}$O$_x$ with $x=0.15, 0.6$. In our previous results on the superconducting phase ThFeAsN with $T_c=$ 30 K, no magnetic transition is observed by cooling down to 6 K, and possible oxygen occupancy at the nitrogen site is shown in the refinement(H. C. Mao emph{et al.}, EPL, 117, 57005 (2017)). Here, in the oxygen doped system ThFeAsN$_{1-x}$O$_x$, two superconducting region ($0leqslant x leqslant 0.1$ and $0.25leqslant x leqslant 0.55$) have been identified by transport experiments (B. Z. Li emph{et al.}, J. Phys.: Condens. Matter 30, 255602 (2018)). However, within the resolution of our neutron powder diffraction experiment, neither the intermediate doping $x=0.15$ nor the heavily overdoped compound $x= 0.6$ shows any magnetic order from 300 K to 4 K. Therefore, while it shares the common phenomenon of two superconducting domes as most of 1111-type iron-based superconductors, the magnetically ordered parent compound may not exist in this nitride family.
The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in recent reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe$_{0.55}$Se$_{0.45}$. An associated puzzle is that the top ological features and superconducting properties are not observed uniformly across the sample surface. Understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy (ARPES), and microprobe composition and resistivity measurements to characterize the electronic state of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, while the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe$_{0.55}$Se$_{0.45}$ is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
66 - X.-L. Peng , Y. Li , X.-X. Wu 2019
Superconductors with topological surface or edge states have been intensively explored for the prospect of realizing Majorana bound states, which obey non-Abelian statistics and are crucial for topological quantum computation. The traditional routes for making topological insulator/superconductor and semiconductor/superconductor heterostructures suffer fabrication difficulties and can only work at low temperature. Here, we use angle-resolved photoemission spectroscopy to directly observe the evolution of a topological transition of band structure nearby the Fermi level in two-dimensional high-T$_{c}$ superconductor FeTe$_{1-x}$Se$_{x}$/SrTiO$_{3}$(001) monolayers, fully consistent with our theoretical calculations. Furthermore, evidence of edge states is revealed by scanning tunneling spectroscopy with assistance of theoretical calculations. Our study provides a simple and tunable platform for realizing and manipulating Majorana states at high temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا