ﻻ يوجد ملخص باللغة العربية
Highly transmissive ballistic junctions are demonstrated between Nb and the two-dimensional electron gas formed at an InAs/AlSb heterojunction. A reproducible fabrication protocol is presented yielding high critical supercurrent values. Current-voltage characteristics were measured down to 0.4 K and the observed supercurrent behavior was analyzed within a ballistic model in the clean limit. This investigation allows us to demonstrate an intrinsic interface transmissivity approaching 90%. The reproducibility of the fabrication protocol makes it of interest for the experimental study of InAs-based superconductor-semiconductor hybrid devices.
We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the
The physics of the $pi$ phase shift in ferromagnetic Josephson junctions may enable a range of applications for spin-electronic devices and quantum computing. We investigate transitions from ``0 to ``$pi$ states in Nb/Fe/Nb Josephson junctions by var
Electrical properties of Josephson junctions Nb/FeSi/Nb with superconductor/ferromagnet (S/F)interfaces are presented. Due to Andreev reflection the nearly exact quadruple enhancement of the tunnel junction differential conductance compared with that
Superconductor/normal conductor/superconductor (SNS) Josephson junctions with highly transparent interfaces are predicted to show significant deviations from sinusoidal supercurrent-phase relationships (CPR) at low temperatures. We investigate experi
We experimentally studied the Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Large critical currents up to 5.7 $mu$A have been achieved, which proves the good coupling of the nanowire to the superconductor. The effect of a magnetic field per