ترغب بنشر مسار تعليمي؟ اضغط هنا

Supercurrent-phase relationship of a Nb/InAs(2DES)/Nb Josephson junction in overlapping geometry

311   0   0.0 ( 0 )
 نشر من قبل Mark Ebel
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductor/normal conductor/superconductor (SNS) Josephson junctions with highly transparent interfaces are predicted to show significant deviations from sinusoidal supercurrent-phase relationships (CPR) at low temperatures. We investigate experimentally the CPR of a ballistic Nb/InAs(2DES)/Nb junction in the temperature range from 1.3 K to 9 K using a modified Rifkin-Deaver method. The CPR is obtained from the inductance of the phase-biased junction. Transport measurements complement the investigation. At low temperatures, substantial deviations of the CPR from conventional tunnel-junction behavior have been observed. A theoretical model yielding good agreement to the data is presented.

قيم البحث

اقرأ أيضاً

We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the properties of the junctions. We have studied the junction characteristics as a function of temperature, gate voltage, and magnetic field. In junctions with high doping concentrations in the nanowire Josephson supercurrent values up to 100,nA are found. Owing to the use of Nb as superconductor the Josephson coupling persists at temperatures up to 4K. In all junctions the critical current monotonously decreased with the magnetic field, which can be explained by a recently developed theoretical model for the proximity effect in ultra-small Josephson junctions. For the low-doped Josephson junctions a control of the critical current by varying the gate voltage has been demonstrated. We have studied conductance fluctuations in nanowires coupled to superconducting and normal metal terminals. The conductance fluctuation amplitude is found to be about 6 times larger in superconducting contacted nanowires. The enhancement of the conductance fluctuations is attributed to phase-coherent Andreev reflection as well as to the large number of phase-coherent channels due to the large superconducting gap of the Nb electrodes.
Highly transmissive ballistic junctions are demonstrated between Nb and the two-dimensional electron gas formed at an InAs/AlSb heterojunction. A reproducible fabrication protocol is presented yielding high critical supercurrent values. Current-volta ge characteristics were measured down to 0.4 K and the observed supercurrent behavior was analyzed within a ballistic model in the clean limit. This investigation allows us to demonstrate an intrinsic interface transmissivity approaching 90%. The reproducibility of the fabrication protocol makes it of interest for the experimental study of InAs-based superconductor-semiconductor hybrid devices.
We experimentally studied the Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Large critical currents up to 5.7 $mu$A have been achieved, which proves the good coupling of the nanowire to the superconductor. The effect of a magnetic field per pendicular to the plane of the Josephson junction on the critical current has been studied. The observed monotonous decrease of the critical current with magnetic field is explained by the magnetic pair-breaking effect in planar Josephson junctions of ultra-narrow width [J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007)]
201 - O. Vavra , S. Gazi , I. Vavra 2004
Electrical properties of Josephson junctions Nb/FeSi/Nb with superconductor/ferromagnet (S/F)interfaces are presented. Due to Andreev reflection the nearly exact quadruple enhancement of the tunnel junction differential conductance compared with that of the normal state was achieved. The transparency of the S/F interfaces in our junctions was estimated to be close to unity. This almost ideal value is obtained due to the use of a very smooth amorphous magnetic FeSi alloy for the barrier preparation. The real structure of the Nb/FeSi/Nb tunnel junction is described as a S/F/I/F/S junction. Also Nb/FeSi/Si/Nb Josephson junctions were investigated and the results found on these junctions confirm the effects observed in Nb/FeSi/Nb.
Transport is called nonreciprocal when not only the sign, but also the absolute value of the current, depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, e.g., by the interplay of spin-orbit coupling and magnetic field. So far, observation of nonreciprocity was always tied to resistivity, and dissipationless nonreciprocal circuit elements were elusive. Here, we engineer fully superconducting nonreciprocal devices based on highly-transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link nonreciprocal supercurrent to the asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient for the first time. A semi-quantitative model well explains the main features of our experimental data. Nonreciprocal Josephson junctions have the potential to become for superconducting circuits what $pn$-junctions are for traditional electronics, opening the way to novel nondissipative circuit elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا