ترغب بنشر مسار تعليمي؟ اضغط هنا

Parallel dynamics of the fully connected Blume-Emery-Griffiths neural network

69   0   0.0 ( 0 )
 نشر من قبل Jordi Busquets Blanco
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied at zero temperature for arbitrary using a probabilistic approach. A recursive scheme is found determining the complete time evolution of the order parameters, taking into account all feedback correlations. It is based upon the evolution of the distribution of the local field, the structure of which is determined in detail. As an illustrative example, explicit analytic formula are given for the first few time steps of the dynamics. Furthermore, equilibrium fixed-point equations are derived and compared with the thermodynamic approach. The analytic results find excellent confirmation in extensive numerical simulations.



قيم البحث

اقرأ أيضاً

The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied for arbitrary temperature. By employing a probabilistic signal-to-noise approach, a recursive scheme is found determining the time evolution of the dis tribution of the local fields and, hence, the evolution of the order parameters. A comparison of this approach is made with the generating functional method, allowing to calculate any physical relevant quantity as a function of time. Explicit analytic formula are given in both methods for the first few time steps of the dynamics. Up to the third time step the results are identical. Some arguments are presented why beyond the third time step the results differ for certain values of the model parameters. Furthermore, fixed-point equations are derived in the stationary limit. Numerical simulations confirm our theoretical findings.
The optimal capacity of a diluted Blume-Emery-Griffiths neural network is studied as a function of the pattern activity and the embedding stability using the Gardner entropy approach. Annealed dilution is considered, cutting some of the couplings ref erring to the ternary patterns themselves and some of the couplings related to the active patterns, both simultaneously (synchronous dilution) or independently (asynchronous dilution). Through the de Almeida-Thouless criterion it is found that the replica-symmetric solution is locally unstable as soon as there is dilution. The distribution of the couplings shows the typical gap with a width depending on the amount of dilution, but this gap persists even in cases where a particular type of coupling plays no role in the learning process.
The Blume-Emery-Griffiths spin glass is studied by renormalization-group theory in d=3. The boundary between the ferromagnetic and paramagnetic phases has first-order and two types of second-order segments. This topology includes an inverted tricriti cal point, first-order transitions replacing second-order transitions as temperature is lowered. The phase diagrams show disconnected spin-glass regions, spin-glass and paramagnetic reentrances, and complete reentrance, where the spin-glass phase replaces the ferromagnet as temperature is lowered for all chemical potentials.
The time evolution of the extremely diluted Blume-Emery-Griffiths neural network model is studied, and a detailed equilibrium phase diagram is obtained exhibiting pattern retrieval, fluctuation retrieval and self-sustained activity phases. It is show n that saddle-point solutions associated with fluctuation overlaps slow down considerably the flow of the network states towards the retrieval fixed points. A comparison of the performance with other three-state networks is also presented.
The categorization ability of fully connected neural network models, with either discrete or continuous Q-state units, is studied in this work in replica symmetric mean-field theory. Hierarchically correlated multi-state patterns in a two level struc ture of ancestors and descendents (examples) are embedded in the network and the categorization task consists in recognizing the ancestors when the network is trained exclusively with their descendents. Explicit results for the dependence of the equilibrium properties of a Q=3-state model and a $Q=infty$-state model are obtained in the form of phase diagrams and categorization curves. A strong improvement of the categorization ability is found when the network is trained with examples of low activity. The categorization ability is found to be robust to finite threshold and synaptic noise. The Almeida-Thouless lines that limit the validity of the replica-symmetric results, are also obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا