ترغب بنشر مسار تعليمي؟ اضغط هنا

The Blume-Emery-Griffiths Spin Glass and Inverted Tricritical Points

152   0   0.0 ( 0 )
 نشر من قبل A. Nihat Berker
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Blume-Emery-Griffiths spin glass is studied by renormalization-group theory in d=3. The boundary between the ferromagnetic and paramagnetic phases has first-order and two types of second-order segments. This topology includes an inverted tricritical point, first-order transitions replacing second-order transitions as temperature is lowered. The phase diagrams show disconnected spin-glass regions, spin-glass and paramagnetic reentrances, and complete reentrance, where the spin-glass phase replaces the ferromagnet as temperature is lowered for all chemical potentials.



قيم البحث

اقرأ أيضاً

The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied for arbitrary temperature. By employing a probabilistic signal-to-noise approach, a recursive scheme is found determining the time evolution of the dis tribution of the local fields and, hence, the evolution of the order parameters. A comparison of this approach is made with the generating functional method, allowing to calculate any physical relevant quantity as a function of time. Explicit analytic formula are given in both methods for the first few time steps of the dynamics. Up to the third time step the results are identical. Some arguments are presented why beyond the third time step the results differ for certain values of the model parameters. Furthermore, fixed-point equations are derived in the stationary limit. Numerical simulations confirm our theoretical findings.
The optimal capacity of a diluted Blume-Emery-Griffiths neural network is studied as a function of the pattern activity and the embedding stability using the Gardner entropy approach. Annealed dilution is considered, cutting some of the couplings ref erring to the ternary patterns themselves and some of the couplings related to the active patterns, both simultaneously (synchronous dilution) or independently (asynchronous dilution). Through the de Almeida-Thouless criterion it is found that the replica-symmetric solution is locally unstable as soon as there is dilution. The distribution of the couplings shows the typical gap with a width depending on the amount of dilution, but this gap persists even in cases where a particular type of coupling plays no role in the learning process.
The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied at zero temperature for arbitrary using a probabilistic approach. A recursive scheme is found determining the complete time evolution of the order para meters, taking into account all feedback correlations. It is based upon the evolution of the distribution of the local field, the structure of which is determined in detail. As an illustrative example, explicit analytic formula are given for the first few time steps of the dynamics. Furthermore, equilibrium fixed-point equations are derived and compared with the thermodynamic approach. The analytic results find excellent confirmation in extensive numerical simulations.
The locations of multicritical points on many hierarchical lattices are numerically investigated by the renormalization group analysis. The results are compared with an analytical conjecture derived by using the duality, the gauge symmetry and the re plica method. We find that the conjecture does not give the exact answer but leads to locations slightly away from the numerically reliable data. We propose an improved conjecture to give more precise predictions of the multicritical points than the conventional one. This improvement is inspired by a new point of view coming from renormalization group and succeeds in deriving very consistent answers with many numerical data.
We extend the Blume-Emery-Griffiths (BEG) model to a two-component BEG model in order to study 2D systems with two order parameters, such as magnetic superconductors or two-component Bose-Einstein condensates. The model is investigated using Monte Ca rlo simulations, and the temperature-concentration phase diagram is determined in the presence and absence of an external magnetic field. This model exhibits a rich phase diagram, including a second-order transition to a phase where superconductivity and magnetism coexist. Results are compared with experiments on Cerium-based heavy-fermion superconductors. To study cold atom mixtures, we also simulate the BEG and two-component BEG models with a trapping potential. In the BEG model with a trap, there is no longer a first order transition to a true phase-separated regime, but a crossover to a kind of phase-separated region. The relation with imbalanced fermi-mixtures is discussed. We present the phase diagram of the two-component BEG model with a trap, which can describe boson-boson mixtures of cold atoms. Although there are no experimental results yet for the latter, we hope that our predictions could help to stimulate future experiments in this direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا