ﻻ يوجد ملخص باللغة العربية
By exploiting the analyticity and boundary value properties of the thermal Green functions that result from the KMS condition in both time and energy complex variables, we treat the general (non-perturbative) problem of recovering the thermal functions at real times from the corresponding functions at imaginary times, introduced as primary objects in the Matsubara formalism. The key property on which we rely is the fact that the Fourier transforms of the retarded and advanced functions in the energy variable have to be the `unique Carlsonian analytic interpolations of the Fourier coefficients of the imaginary-time correlator, the latter being taken at the discrete Matsubara imaginary energies, respectively in the upper and lower half-planes. Starting from the Fourier coefficients regarded as `data set, we then develop a method based on the Pollaczek polynomials for constructing explicitly their analytic interpolations.
We extend the recently developed Quantum Quasi-Monte Carlo (QQMC) approach to obtain the full frequency dependence of Green functions in a single calculation. QQMC is a general approach for calculating high-order perturbative expansions in power of t
Recent experiments by Springer and Kenyon have shown that a deep neural network can be trained to predict the action of $t$ steps of Conways Game of Life automaton given millions of examples of this action on random initial states. However, training
In this paper we focus our attention on a particle that follows a unidirectional quantum walk, an alternative version of the nowadays widespread discrete-time quantum walk on a line. Here the walker at each time step can either remain in place or mov
Building on previous developments, we show that the Diagrammatic Monte Carlo technique allows to compute finite temperature response functions directly on the real-frequency axis within any field-theoretical formulation of the interacting fermion pro
We consider near-critical two-dimensional statistical systems with boundary conditions inducing phase separation on the strip. By exploiting low-energy properties of two-dimensional field theories, we compute arbitrary $n$-point correlation of the or