ﻻ يوجد ملخص باللغة العربية
Building on previous developments, we show that the Diagrammatic Monte Carlo technique allows to compute finite temperature response functions directly on the real-frequency axis within any field-theoretical formulation of the interacting fermion problem. There are no limitations on the type and nature of the systems action or whether partial summation and self-consistent treatment of certain diagram classes are used. In particular, by eliminating the need for numerical analytic continuation from a Matsubara representation, our scheme allows to study spectral densities of arbitrary complexity with controlled accuracy in models with frequency-dependent effective interactions. For illustrative purposes we consider the problem of the plasmon line-width in a homogeneous electron gas (jellium).
Diagrammatic expansions are a central tool for treating correlated electron systems. At thermal equilibrium, they are most naturally defined within the Matsubara formalism. However, extracting any dynamic response function from a Matsubara calculatio
We extend the natural orbital impurity solver [PRB 90, 085102 (2014)] to finite temperatures within the dynamical mean field theory and apply it to calculate transport properties of correlated electrons. First, we benchmark our method against the exa
We examine the accuracy of the microcanonical Lanczos method (MCLM) developed by Long, {it et al.} [Phys. Rev. B {bf 68}, 235106 (2003)] to compute dynamical spectral functions of interacting quantum models at finite temperatures. The MCLM is based o
The cost of the exact solution of the many-electron problem is believed to be exponential in the number of degrees of freedom, necessitating approximations that are controlled and accurate but numerically tractable. In this paper, we show that one of
As new kinds of stabilizer code models, fracton models have been promising in realizing quantum memory or quantum hard drives. However, it has been shown that the fracton topological order of 3D fracton models occurs only at zero temperature. In this