ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between disorder and intersubband collective excitations in the two-dimensional electron gas

67   0   0.0 ( 0 )
 نشر من قبل Stefano Luin
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intersubband absorption in modulation-doped quantum wells is usually appropriately described as a collective excitation of the confined two-dimensional electron gas. At sufficiently low electron density and low temperatures, however, the in-plane disorder potential is able to damp the collective modes by mixing the intersubband charge-density excitation with single-particle localized modes. Here we show experimental evidence of this transition. The results are analyzed within the framework of the density functional theory and highlight the impact of the interplay between disorder and the collective response of the two-dimensional electron gas in semiconductor heterostructures.

قيم البحث

اقرأ أيضاً

We report electronic transport measurements on two-dimensional electron gases in a Ga[Al]As heterostructure with an embedded layer of InAs self-assembled quantum dots. At high InAs dot densities, pronounced Altshuler-Aronov-Spivak magnetoresistance o scillations are observed, which indicate short-range ordering of the potential landscape formed by the charged dots and the strain fields. The presence of these oscillations coincides with the observation of a metal-insulator transition, and a maximum in the electron mobility as a function of the electron density. Within a model based on correlated disorder, we establish a relation between these effects.
118 - Y.S. Gui , C.R. Becker , J. Liu 2002
The transport properties of a magnetic two dimensional electron gas consisting of a modulation doped n type HgMnTe/HgCdTe quantum well, QW, have been investigated. By analyzing the Shubnikov-de Haas oscillations and the node positions of their beatin g patterns, we have been able to separate the gate voltage dependent Rashba spin-orbit splitting from the temperature dependent giant Zeeman splitting. It has been experimentally demonstrated that the Rashba spin-orbit splitting is larger than or comparable to the $sp-d$ exchange interaction induced giant Zeeman splitting in this magnetic 2DEG even at moderately high magnetic fields.
While it has been recently demonstrated that, for quasi-2D electron gas (Q2DEG) with one filled miniband, the dynamic exchange $f_x$ and Hartree $f_H$ kernels cancel each other in the low-density regime $r_srightarrow infty$ (by half and completely, for the spin-neutral and fully spin-polarized cases, respectively), here we analytically show that the same happens at arbitrary densities at short distances. This motivates us to study the confinement dependence of the excitations in Q2DEG. Our calculations unambiguously confirm that, at strong confinements, the time-dependent exact exchange excitation energies approach the single-particle Kohn-Sham ones for the spin-polarized case, while the same, but less pronounced, tendency is observed for spin-neutral Q2DEG.
High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importanc e of out-of-plane charge dynamics, believed to be incoherent in the normal state, yet lacking a comprehensive characterization in energy-momentum space. Here, we use resonant inelastic x-ray scattering (RIXS) with polarization analysis to uncover the pure charge character of a recently discovered collective mode in electron-doped cuprates. This mode disperses along both the in- and, importantly, out-of-plane directions, revealing its three dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the CuO2 plane distance rather than the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction drives the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought acoustic plasmon, predicted for layered systems and argued to play a substantial role in mediating high temperature superconductivity.
The collective excitations of a zero-temperature, spin-polarized, harmonically trapped, two-dimensional dipolar Fermi gas are examined within the Thomas-Fermi von Weizsacker hydrodynamic theory. We focus on repulsive interactions, and investigate the dependence of the excitation frequencies on the strength of the dipolar interaction and particle number. We find that the mode spectrum can be classified according to bulk modes, whose frequencies are shifted upward as the interaction strength is increased, and an infinite ladder of surface modes, whose frequencies are {em independent} of the interactions in the large particle limit. We argue quite generally that it is the {em local} character of the two-dimensional energy density which is responsible for the insensitivity of surface excitations to the dipolar interaction strength, and not the precise form of the equation of state. This property will not be found for the collective excitations of harmonically trapped, dipolar Fermi gases in one and three dimensions, where the energy density is manifestly nonlocal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا