ترغب بنشر مسار تعليمي؟ اضغط هنا

Specific heat of the $S = 1$ spin-dimer antiferromagnet Ba$_3$Mn$_2$O$_8$ in high magnetic fields

92   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Tsujii
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the specific heat of the coupled spin-dimer antiferromagnet Ba$_3$Mn$_2$O$_8$ to 50 mK in temperature and to 29 T in the magnetic field. The experiment extends to the midpoint of the field region (25.9 T $leq H leq$ 32.3 T) of the magnetization plateau at 1/2 of the saturation magnetization, and reveals the presence of three ordered phases in the field region between that of the magnetization plateau and the low-field spin-liquid region. The exponent of the phase boundary with the thermally disordered region is smaller than the theoretical value based on the Bose-Einstein condensation of spin triplets. At zero field and 29 T, the specific-heat data show gapped behaviors characteristic of spin liquids. The zero-field data indicate that the gapped triplet excitations form two levels whose energies differ by nearly a factor of two. At least the lower level is well localized. The data at 29 T reveal that the low-lying excitations at the magnetization plateau are weakly delocalized.



قيم البحث

اقرأ أيضاً

Magnetic susceptibility and the magnetization process have been measured in green polycrystal. In this compound, the magnetic manganese ion exists as Mn$^{5+}$ in a tetrahedral environment, and thus the magnetic interaction can be described by an S=1 Heisenberg model. The ground state was found to be a spin singlet with an excitation gap $Delta/k_{rm B}=11.2$ K. Magnetization plateaus were observed at zero and at half of the saturation magnetization. These results indicate that the present system can be represented by a coupled antiferromagnetic dimer model.
Measuring the specific heat of herbertsmithite single crystals in high magnetic fields (up to $34$ T) allows us to isolate the low-temperature kagome contribution while shifting away extrinsic Schottky-like contributions. The kagome contribution foll ows an original power law $C_{p}(Trightarrow0)propto T^{alpha}$ with $alphasim1.5$ and is found field-independent between $28$ and $34$ T for temperatures $1leq Tleq4$ K. These are serious constrains when it comes to replication using low-temperature extrapolations of high-temperature series expansions. We manage to reproduce the experimental observations if about $10$ % of the kagome sites do not contribute. Between $0$ and $34$ T, the computed specific heat has a minute field dependence then supporting an algebraic temperature dependence in zero field, typical of a critical spin liquid ground state. The need for an effective dilution of the kagome planes is discussed and is likely linked to the presence of copper ions on the interplane zinc sites. At very low temperatures and moderate fields, we also report some small field-induced anomalies in the total specific heat and start to elaborate a phase diagram.
The quantum spin liquid (QSL) is an exotic phase of magnetic materials where the spins continue to fluctuate without any symmetry breaking down to zero temperature. Among the handful reports of QSL with spin $Sge$1, examples with magnetic ions on a t hree-dimensional magnetic lattice are extremely rare since both larger spin and higher dimension tend to suppress quantum fluctuations. In this work, we offer a new strategy to achieve 3-D QSL with high spin by utilizing two types of transition metal ions, both are magnetically active but located at crystallographically inequivalent positions. We design a 3-D magnetic system Ba$_3$NiIr$_2$O$_9$ consisting of interconnected corner shared NiO$_6$ octahedra and face shared Ir$_2$O$_9$ dimer, both having triangular arrangements in textit{a-b} plane. X-ray absorption spectroscopy measurements confirm the presence of Ni$^{2+}$ ($S$=1). Our detailed thermodynamic and magnetic measurements reveal that this compound is a realization of gapless QSL state down to at least 100 mK. Ab-initio calculations find a strong magnetic exchange between Ir and Ni sublattices and in-plane antiferromagnetic coupling between the dimers, resulting in dynamically fluctuating magnetic moments on both the Ir and Ni sublattice.
We have discovered a novel candidate for a spin liquid state in a ruthenium oxide composed of dimers of $S = $ 3/2 spins of Ru$^{5+}$,Ba$_3$ZnRu$_2$O$_9$. This compound lacks a long range order down to 37 mK, which is a temperature 5000-times lower t han the magnetic interaction scale of around 200 K. Partial substitution for Zn can continuously vary the magnetic ground state from an antiferromagnetic order to a spin-gapped state through the liquid state. This indicates that the spin-liquid state emerges from a delicate balance of inter- and intra-dimer interactions, and the spin state of the dimer plays a vital role. This unique feature should realize a new type of quantum magnetism.
The magnetic properties of the two-dimensional, S=1 honeycomb antiferromagnet BaNi$_2$V$_2$O$_8$ have been comprehensively studied using DC susceptibility measurements and inelastic neutron scattering techniques. The magnetic excitation spectrum is f ound to be dispersionless within experimental resolution between the honeycomb layers, while it disperses strongly within the honeycomb plane where it consists of two gapped spin-wave modes. The magnetic excitations are compared to linear spin-wave theory allowing the Hamiltonian to be determined. The first- and second-neighbour magnetic exchange interactions are antiferromagnetic and lie within the ranges 10.90meV$le$J$_n$$le$13.35 meV and 0.85meV$le$J$_{nn}$$le$1.65 meV respectively. The interplane coupling J$_{out}$ is four orders of magnitude weaker than the intraplane interactions, confirming the highly two-dimensional magnetic behaviour of this compound. The sizes of the energy gaps are used to extract the magnetic anisotropies and reveal substantial easy-plane anisotropy and a very weak in-plane easy-axis anisotropy. Together these results reveal that BaNi$_2$V$_2$O$_8$ is a candidate compound for the investigation of vortex excitations and Berezinsky-Kosterliz-Thouless phenomenona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا