ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel Fine-Structure in the Low-Energy Excitation Spectrum of a High-Tc Superconductor by Polarization Dependent Photoemission

187   0   0.0 ( 0 )
 نشر من قبل Ralph Mueller
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angle-resolved photoemission spectroscopy is performed on single crystals of the single-layer high-Tc superconductor Bi(2)Sr(2-x)La(x)CuO(6+d) at optimal doping (x=0.4) in order to study in great detail the Zhang-Rice (ZR) singlet band at the Fermi level. Besides the high crystal quality the advantages of a single-layer material are the absence of bilayer effects and the distinct reduction of thermal broadening. Due to the high energy and angle resolution and, most important, due to the controlled variation of the polarization vector of the synchrotron radiation the emission from the ZR singlet band reveals a distinct fine-structure. It consists of two maxima, the first showing only weak and the second at EF extremely strong polarization dependence. However, our observation has enormous consequences for line shape analyses and the determination of pseudo gaps by photoemission.


قيم البحث

اقرأ أيضاً

We report the discovery of a self-doped multi-layer high Tc superconductor Ba2Ca3Cu4O8F2(F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi surface(FS) sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a Tc of 60K, possessing simultaneously both electron- and hole-doped FS sheets. Intriguingly, the FS sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic (Pi/a, Pi/a) scattering.
The high-energy kink or the waterfall effect seen in the photoemission spectra of the cuprates is suggestive of the coupling of the quasiparticles to a high energy bosonic mode with implications for the mechanism of superconductivity. Recent experime nts however indicate that this effect may be an artifact produced entirely by the matrix element effects, i.e. by the way the photoemitted electron couples to the incident photons in the emission process. In order to address this issue directly, we have carried out realistic computations of the photo-intensity in ${rm Bi_2Sr_2CaCu_2O_8}$ (Bi2212) where the effects of the matrix element are included together with those of the corrections to the self-energy resulting from electronic excitations. Our results demonstrate that while the photoemission matrix element plays an important role in shaping the spectra, the waterfall effect is a clear signature of the presence of strong coupling of quasiparticles to electronic excitations.
First-principles calculations were performed to investigate the electronic structure and the Fermi surface of the newly discovered low-temperature superconductor: fluorine-doped WO3. We find that F doping provides the transition of the insulating tun gsten trioxide into a metallic-like phase WO3-xFx, where the near-Fermi states are formed mainly from W 5d with admixture of O 2p orbitals. The cooperative effect of fluorine additives in WO3 consists in change of electronic concentration as well as the lattice constant. At probing their influence on the near-Fermi states separately, the dominant role of the electronic factor for the transition of tungsten oxyfluoride into superconducting state was established. The volume of the Fermi surface gradually increases with the increase of the doping. In the sequence WO3 rightarrow WO2.5F0.5 the effective atomic charges of W and O ions decrease, but much less, than it is predicted within the idealized ionic model - owing to presence of the covalent interactions W-O and W-F.
The Nernst effect in metals is highly sensitive to two kinds of phase transition: superconductivity and density-wave order. The large positive Nernst signal observed in hole-doped high-Tc superconductors above their transition temperature Tc has so f ar been attributed to fluctuating superconductivity. Here we show that in some of these materials the large Nernst signal is in fact caused by stripe order, a form of spin / charge modulation which causes a reconstruction of the Fermi surface. In LSCO doped with Nd or Eu, the onset of stripe order causes the Nernst signal to go from small and negative to large and positive, as revealed either by lowering the hole concentration across the quantum critical point in Nd-LSCO, or lowering the temperature across the ordering temperature in Eu-LSCO. In the latter case, two separate peaks are resolved, respectively associated with the onset of stripe order at high temperature and superconductivity near Tc. This sensitivity to Fermi-surface reconstruction makes the Nernst effect a promising probe of broken symmetry in high-Tc superconductors.
We have measured the low temperature heat capacity Cp and microwave surface impedance Zs in the vortex state of YNi_2B_2C. In contrast to conventional s-wave superconductors, Cp shows a nearly sqrt H-dependence. This sqrt H-dependence persists even a fter the introduction of the columnar defects which change the electronic structure of the vortex core regime dramatically and strongly disturb the regular vortex lattice. On the other hand, flux flow resistivity obtained from Zs is nearly proportional to H. Taken together, these results indicate that the vortex state of YNi_2B_2C is fundamentally different from the conventional s-wave counterparts, in that the delocalized quasiparticle states around the vortex core play a much more important role, similar to d-wave superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا