ترغب بنشر مسار تعليمي؟ اضغط هنا

X-Ray Scattering Evidence for Macroscopic Strong Pinning Centers in the Sliding CDW state of NbSe_3

42   0   0.0 ( 0 )
 نشر من قبل Rideau
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using high-resolution X-ray scattering techniques, we measure the variation, q(x), of the position in reciprocal space of the CDW satellite, in the sliding state, along the length of NbSe_3 whiskers. We show that structural defects and intentionally X-ray radiation-damaged regions increase locally the CDW pinning force, and induce CDW phase distortions which are consistent with those observed near contacts. Using the semi-microscopic model from Brazovskii describing the normal-condensed carrier conversion, with spatially varying parameters, we account for the experimental spatial dependence of the CDW phase gradient near both types of defects.



قيم البحث

اقرأ أيضاً

The dynamical properties of longitudinal and transverse conduction of NbSe$_3$ single-crystals have been simultaneously studied when the current is applied along the b axis (chain direction). In the vicinity of the threshold electric field for CDW sl iding, the transverse conduction sharply decreases. When a rf field is applied, voltage Shapiro steps for longitudinal transport are observed as usual, but also current Shapiro steps in the transverse direction. The possible mechanisms of this effect are discussed.
Incommensurate charge density waves (CDW) have the extraordinary ability to display non-Ohmic behavior when submitted to an external field. The mechanism leading to this non trivial dynamics is still not well understood, although recent experimental studies tend to prove that it is due to solitonic transport. Solitons could come from the relaxation of the strained CDW within an elastic-to-plastic transition. However, the nucleation process and the transport of these charged topological objects have never been observed at the local scale until now. In this letter, we use in-situ scanning x-ray micro-diffraction with micrometer resolution of a NbSe$_3$ sample designed to have sliding and non-sliding areas. Direct imaging of the charge density wave deformation is obtained using an analytical approach based on the phase gradient to disentangle the transverse from the longitudinal components over a large surface of a hundred microns size. We show that the CDW dissociates itself from the host lattice in the sliding regime and displays a large transverse deformation, ten times larger than the longitudinal one and strongly dependent on the amplitude and the direction of the applied currents. This deformation continuously extends across the macroscopic sample dimensions, over a distance 10 000 times greater than the CDW wavelength despite the presence of strong defects while remaining strongly pinned by the lateral surfaces. This 2D quantitative study highlights the prominent role of shear effect that should play a significant role in the nucleation of solitons.
132 - H. Nakao 2000
Charge ordering of V4+ and V5+ in NaV2O5 has been studied by an X-ray diffraction technique using anomalous scattering near a vanadium K-absorption edge to critically enhance a contrast between the two ions. A dramatic energy dependence of the superl attice intensities is observed below Tc=35 K. Consequently, the charge ordering pattern is the zigzag-type ladders with the unit cell 2a*2b*4c, but not the chain-type originally proposed for the spin-Peierls state. Charge disproportionation suggested in our model as the average valence V^{4.5+-delta_c/2} is observed below T_C, showing continuous variation of delta_c as a function of temperature.
We investigate the low-temperature charge-density-wave (CDW) state of bulk TaS$_2$ with a fully self-consistent DFT+U approach, over which the controversy has remained unresolved regarding the out-of-plane metallic band. By examining the innate struc ture of the Hubbard U potential, we reveal that the conventional use of atomic-orbital basis could seriously misevaluate the electron correlation in the CDW state. By adopting a generalized basis, covering the whole David star, we successfully reproduce the Mott insulating nature with the layer-by-layer antiferromagnetic order. Similar consideration should be applied for description of the electron correlation in molecular solid.
We investigated the ground state symmetry of the cubic hidden order compound CeB$_6$ by means of core level non-resonant inelastic x-ray scattering (NIXS). The information is obtained from the directional dependence of the scattering function that ar ises from higher than dipole transitions. Our new method confirms that the ground state is well described using a localized crystal-field model assuming a $Gamma_8$ quartet ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا