ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase fluctuations, dissipation and superfluid stiffness in d-wave superconductors

109   0   0.0 ( 0 )
 نشر من قبل Arun Paramekanti
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of dissipation on quantum phase fluctuations in d-wave superconductors. Dissipation, arising from a nonzero low frequency optical conductivity which has been measured in experiments below $T_c$, has two effects: (1) a reduction of zero point phase fluctuations, and (2) a reduction of the temperature at which one crosses over to classical thermal fluctuations. For parameter values relevant to the cuprates, we show that the crossover temperature is still too large for classical phase fluctuations to play a significant role at low temperature. Quasiparticles are thus crucial in determining the linear temperature dependence of the in-plane superfluid stiffness. Thermal phase fluctuations become important at higher temperatures and play a role near $T_c$.



قيم البحث

اقرأ أيضاً

Pair density wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair density wave ordered state, and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d-wave superconductivity, we show that the pair density wave phase exhibits neither a spin-gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La$_{1.905}$Ba$_{0.095}$CuO$_4$ [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].
The competing orders in the particle-particle (P-P) channel and the particle-hole (P-H) channel have been proposed separately to explain the pseudogap physics in cuprates. By solving the Bogoliubov-deGennes equation self-consistently, we show that th ere is a general complementary connection between the d-wave checkerboard order (DWCB) in the particle-hole (P-H) channel and the pair density wave order (PDW) in the particle-particle (P-P) channel. A small pair density localization generates DWCB and PDW orders simultaneously. The result suggests that suppressing superconductivity locally or globally through phase fluctuation should induce both orders in underdoped cuprates. The presence of both DWCB and PDW orders with $4a times 4a$ periodicity can explain the checkerboard modulation observed in FT-STS from STM and the puzzling dichotomy between the nodal and antinodal regions as well as the characteristic features such as non-dispersive Fermi arc in the pseudogap state.
We present exact results that give insight into how interactions lead to transport and superconductivity in a flat band where the electrons have no kinetic energy. We obtain bounds for the optical spectral weight for flat band superconductors, that l ead to upper bounds for the superfluid stiffness and the 2D $T_c$. We focus on on-site attraction $|U|$ on the Lieb lattice with trivial flat bands and on the $pi$-flux model with topological flat bands. For trivial flat bands, the low-energy optical spectral weight $widetilde{D}_text{low} leq widetilde{n} |U| Omega/2$ with $widetilde{n} = minleft(n,2-nright)$, where $n$ is the flat band density and $Omega$ the Marzari-Vanderbilt spread of the Wannier functions (WFs). We also obtain a lower bound involving the quantum metric. For topological flat bands, with an obstruction to localized WFs respecting all symmetries, we again obtain an upper bound for $D_{rm low}$ linear in $|U|$. We discuss the insights obtained from our bounds by comparing them with mean-field and quantum Monte-Carlo results.
We calculate superfluid density for a dirty d-wave superconductor. The effects of impurity scattering are treated within the self-consistent t-matrix approximation, in weak-coupling BCS theory. Working from a realistic tight-binding parameterization of the Fermi surface, we find a superfluid density that is both correlated with T_c and linear in temperature, in good correspondence with recent experiments on overdoped La2-xSrxCuO4.
Electron irradiation has been used to introduce point defects in a controlled way in the CuO2 planes of underdoped and optimally doped YBCO. This technique allows us to perform very accurate measurements of Tc and of the residual resistivity in a wid e range of defect contents xd down to Tc=0. The Tc decrease does not follow the variation expected from pair breaking theories. The evolutions of Tc and of the transition width with xd emphasize the importance of phase fluctuations, at least for the highly damaged regime. These results open new questions about the evolution of the defect induced Tc depression over the phase diagram of the cuprates
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا