ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Spectral Weight, Phase Stiffness and Tc Bounds for Trivial and Topological Flat Band Superconductors

88   0   0.0 ( 0 )
 نشر من قبل Mohit Randeria
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present exact results that give insight into how interactions lead to transport and superconductivity in a flat band where the electrons have no kinetic energy. We obtain bounds for the optical spectral weight for flat band superconductors, that lead to upper bounds for the superfluid stiffness and the 2D $T_c$. We focus on on-site attraction $|U|$ on the Lieb lattice with trivial flat bands and on the $pi$-flux model with topological flat bands. For trivial flat bands, the low-energy optical spectral weight $widetilde{D}_text{low} leq widetilde{n} |U| Omega/2$ with $widetilde{n} = minleft(n,2-nright)$, where $n$ is the flat band density and $Omega$ the Marzari-Vanderbilt spread of the Wannier functions (WFs). We also obtain a lower bound involving the quantum metric. For topological flat bands, with an obstruction to localized WFs respecting all symmetries, we again obtain an upper bound for $D_{rm low}$ linear in $|U|$. We discuss the insights obtained from our bounds by comparing them with mean-field and quantum Monte-Carlo results.

قيم البحث

اقرأ أيضاً

We study the effect of dissipation on quantum phase fluctuations in d-wave superconductors. Dissipation, arising from a nonzero low frequency optical conductivity which has been measured in experiments below $T_c$, has two effects: (1) a reduction of zero point phase fluctuations, and (2) a reduction of the temperature at which one crosses over to classical thermal fluctuations. For parameter values relevant to the cuprates, we show that the crossover temperature is still too large for classical phase fluctuations to play a significant role at low temperature. Quasiparticles are thus crucial in determining the linear temperature dependence of the in-plane superfluid stiffness. Thermal phase fluctuations become important at higher temperatures and play a role near $T_c$.
Electron irradiation has been used to introduce point defects in a controlled way in the CuO2 planes of underdoped and optimally doped YBCO. This technique allows us to perform very accurate measurements of Tc and of the residual resistivity in a wid e range of defect contents xd down to Tc=0. The Tc decrease does not follow the variation expected from pair breaking theories. The evolutions of Tc and of the transition width with xd emphasize the importance of phase fluctuations, at least for the highly damaged regime. These results open new questions about the evolution of the defect induced Tc depression over the phase diagram of the cuprates
We present the influences of electronic and magnetic correlations and doping evolution on the groundstate properties of recently discovered superconductor Ba$_{2}$CuO$_{4-delta}$ by utilizing the Kotliar-Ruckenstein slave boson method. Starting with an effective two-orbital Hubbard model (Scalapino {it et al.} Phys. Rev. {bf B 99}, 224515 (2019)), we demonstrate that with increasing doping concentration, the paramagnetic (PM) system evolves from two-band character to single-band ones around the electron filling n=2.5, with the band nature of the $d_{3z^{2}-r^{2}}$ and $d_{x^{2}-y^{2}}$ orbitals to the $d_{x^{2}-y^{2}}$ orbital, slightly affected when the electronic correlation U varies from 2 to 4 eV. Considering the magnetic correlations, the system displays one antiferromagnetically metallic (AFM) phase in $2<n<2.16$ and a PM phase in $n>2.16$ at U=2 eV, or two AFM phases in $2<n<2.57$ and $2.76<n<3$, and a PM phase in $2.57<n<2.76$ respectively, at U=4 eV. Our results show that near realistic superconducting state around n=2.6 the intermediate correlated Ba$_{2}$CuO$_{3,2}$ should be single band character, and the s-wave superconducting pairing strength becomes significant when U$>$2 eV, and crosses over to d-wave when U$>$2.2 eV.
Local antiferromagnetism coexists with superconductivity in the cuprates. Charge segregation provides a way to reconcile these properties. Direct evidence for modulated spin and charge densities has been found in neutron and X-ray scattering studies of Nd-doped La(2-x)Sr(x)CuO(4). Here we discuss the nature of the modulation, and present some new results for a Zn-doped sample. Some of the open questions concerning the connections between segregation and superconductivity are described.
89 - Hideo Aoki 2019
One novel arena for designing superconductors with high $T_C$ is the flat-band systems. A basic idea is that flat bands, arising from quantum mechanical interference, give unique opportunities for enhancing $T_C$ with (i) many pair-scattering channel s between the dispersive and flat bands, and (ii) an even more interesting situation when the flat band is topological and highly entangled. Here we compare two routes, which comprise a multi-band system with a flat band coexisting with dispersive ones, and a one-band case with a portion of the band being flat. Superconductivity can be induced in both cases when the flat band or portion is incipient (close to, but away from, the Fermi energy). Differences are, for the multi-band case, we can exploit large entanglement associated with topological states, while for the one-band case a transition between different (d and p) wave pairings can arise. These hint at some future directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا