ﻻ يوجد ملخص باللغة العربية
We present exact results that give insight into how interactions lead to transport and superconductivity in a flat band where the electrons have no kinetic energy. We obtain bounds for the optical spectral weight for flat band superconductors, that lead to upper bounds for the superfluid stiffness and the 2D $T_c$. We focus on on-site attraction $|U|$ on the Lieb lattice with trivial flat bands and on the $pi$-flux model with topological flat bands. For trivial flat bands, the low-energy optical spectral weight $widetilde{D}_text{low} leq widetilde{n} |U| Omega/2$ with $widetilde{n} = minleft(n,2-nright)$, where $n$ is the flat band density and $Omega$ the Marzari-Vanderbilt spread of the Wannier functions (WFs). We also obtain a lower bound involving the quantum metric. For topological flat bands, with an obstruction to localized WFs respecting all symmetries, we again obtain an upper bound for $D_{rm low}$ linear in $|U|$. We discuss the insights obtained from our bounds by comparing them with mean-field and quantum Monte-Carlo results.
We study the effect of dissipation on quantum phase fluctuations in d-wave superconductors. Dissipation, arising from a nonzero low frequency optical conductivity which has been measured in experiments below $T_c$, has two effects: (1) a reduction of
Electron irradiation has been used to introduce point defects in a controlled way in the CuO2 planes of underdoped and optimally doped YBCO. This technique allows us to perform very accurate measurements of Tc and of the residual resistivity in a wid
We present the influences of electronic and magnetic correlations and doping evolution on the groundstate properties of recently discovered superconductor Ba$_{2}$CuO$_{4-delta}$ by utilizing the Kotliar-Ruckenstein slave boson method. Starting with
Local antiferromagnetism coexists with superconductivity in the cuprates. Charge segregation provides a way to reconcile these properties. Direct evidence for modulated spin and charge densities has been found in neutron and X-ray scattering studies
One novel arena for designing superconductors with high $T_C$ is the flat-band systems. A basic idea is that flat bands, arising from quantum mechanical interference, give unique opportunities for enhancing $T_C$ with (i) many pair-scattering channel