ترغب بنشر مسار تعليمي؟ اضغط هنا

The first 20 minutes in the Hong Kong stock market

69   0   0.0 ( 0 )
 نشر من قبل ZhiFeng Huang
 تاريخ النشر 2000
  مجال البحث فيزياء مالية
والبحث باللغة English
 تأليف Zhi-Feng Huang




اسأل ChatGPT حول البحث

Based on the minute-by-minute data of the Hang Seng Index in Hong Kong and the analysis of probability distribution and autocorrelations, we find that the index fluctuations for the first few minutes of daily opening show behaviors very different from those of the other times. In particular, the properties of tail distribution, which will show the power law scaling with exponent about -4 or an exponential-type decay, the volatility, and its correlations depend on the opening effect of each trading day.



قيم البحث

اقرأ أيضاً

This paper analyses the behaviour of volatility for several international stock market indexes, namely the SP 500 (USA), the Nikkei (Japan), the PSI 20 (Portugal), the CAC 40 (France), the DAX 30 (Germany), the FTSE 100 (UK), the IBEX 35 (Spain) and the MIB 30 (Italy), in the context of non-stationarity. Our empirical results point to the evidence of the existence of integrated behaviour among several of those stock market indexes of different dimensions. It seems, therefore, that the behaviour of these markets tends to some uniformity, which can be interpreted as the existence of a similar behaviour facing to shocks that may affect the worldwide economy. Whether this is a cause or a consequence of market globalization is an issue that may be stressed in future work.
Summarized by the efficient market hypothesis, the idea that stock prices fully reflect all available information is always confronted with the behavior of real-world markets. While there is plenty of evidence indicating and quantifying the efficienc y of stock markets, most studies assume this efficiency to be constant over time so that its dynamical and collective aspects remain poorly understood. Here we define the time-varying efficiency of stock markets by calculating the permutation entropy within sliding time-windows of log-returns of stock market indices. We show that major world stock markets can be hierarchically classified into several groups that display similar long-term efficiency profiles. However, we also show that efficiency ranks and clusters of markets with similar trends are only stable for a few months at a time. We thus propose a network representation of stock markets that aggregates their short-term efficiency patterns into a global and coherent picture. We find this financial network to be strongly entangled while also having a modular structure that consists of two distinct groups of stock markets. Our results suggest that stock market efficiency is a collective phenomenon that can drive its operation at a high level of informational efficiency, but also places the entire system under risk of failure.
Using the Generalised Lotka Volterra (GLV) model adapted to deal with muti agent systems we can investigate economic systems from a general viewpoint and obtain generic features common to most economies. Assuming only weak generic assumptions on capi tal dynamics, we are able to obtain very specific predictions for the distribution of social wealth. First, we show that in a fair market, the wealth distribution among individual investors fulfills a power law. We then argue that fair play for capital and minimal socio-biological needs of the humans traps the economy within a power law wealth distribution with a particular Pareto exponent $alpha sim 3/2$. In particular we relate it to the average number of individuals L depending on the average wealth: $alpha sim L/(L-1)$. Then we connect it to certain power exponents characterising the stock markets. We obtain that the distribution of volumes of the individual (buy and sell) orders follows a power law with similar exponent $beta sim alpha sim 3/2$. Consequently, in a market where trades take place by matching pairs of such sell and buy orders, the corresponding exponent for the market returns is expected to be of order $gamma sim 2 alpha sim 3$. These results are consistent with recent experimental measurements of these power law exponents ([Maslov 2001] for $beta$ and [Gopikrishnan et al. 1999] for $gamma$).
344 - Xing Li , Tian Qiu , Guang Chen 2016
Geography effect is investigated for the Chinese stock market including the Shanghai and Shenzhen stock markets, based on the daily data of individual stocks. The Shanghai city and the Guangdong province can be identified in the stock geographical se ctor. By investigating a geographical correlation on a geographical parameter, the stock location is found to have an impact on the financial dynamics, except for the financial crisis time of the Shenzhen market. Stock distance effect is further studied, with a crossover behavior observed for the stock distance distribution. The probability of the short distance is much greater than that of the long distance. The average stock correlation is found to weakly decay with the stock distance for the Shanghai stock market, but stays nearly stable for different stock distance for the Shenzhen stock market.
This paper investigates the rank distribution, cumulative probability, and probability density of price returns for the stocks traded in the KSE and the KOSDAQ market. This research demonstrates that the rank distribution is consistent approximately with the Zipfs law with exponent $alpha = -1.00$ (KSE) and -1.31 (KOSDAQ), similar that of stock prices traded on the TSE. In addition, the cumulative probability distribution follows a power law with scaling exponent $beta = -1.23$ (KSE) and -1.45 (KOSDAQ). In particular, the evidence displays that the probability density of normalized price returns for two kinds of assets almost has the form of an exponential function, similar to the result in the TSE and the NYSE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا