ﻻ يوجد ملخص باللغة العربية
This paper investigates the rank distribution, cumulative probability, and probability density of price returns for the stocks traded in the KSE and the KOSDAQ market. This research demonstrates that the rank distribution is consistent approximately with the Zipfs law with exponent $alpha = -1.00$ (KSE) and -1.31 (KOSDAQ), similar that of stock prices traded on the TSE. In addition, the cumulative probability distribution follows a power law with scaling exponent $beta = -1.23$ (KSE) and -1.45 (KOSDAQ). In particular, the evidence displays that the probability density of normalized price returns for two kinds of assets almost has the form of an exponential function, similar to the result in the TSE and the NYSE.
We study the rank distribution, the cumulative probability, and the probability density of returns of stock prices of listed firms traded in four stock markets. We find that the rank distribution and the cumulative probability of stock prices traded
We investigate the general problem of how to model the kinematics of stock prices without considering the dynamical causes of motion. We propose a stochastic process with long-range correlated absolute returns. We find that the model is able to repro
We statistically investigate the distribution of share price and the distributions of three common financial indicators using data from approximately 8,000 companies publicly listed worldwide for the period 2004-2013. We find that the distribution of
We study how the presence of correlations in physical variables contributes to the form of probability distributions. We investigate a process with correlations in the variance generated by (i) a Gaussian or (ii) a truncated L{e}vy distribution. For
Zipfs law describes the empirical size distribution of the components of many systems in natural and social sciences and humanities. We show, by solving a statistical model, that Zipfs law co-occurs with the maximization of the diversity of the compo