ﻻ يوجد ملخص باللغة العربية
In this paper, we study the equilibrium properties of polymer chains end-tethered to a fluid membrane. The loss of conformational entropy of the polymer results in an inhomogeneous pressure field that we calculate for gaussian chains. We estimate the effects of excluded volume through a relation between pressure and concentration. Under the polymer pressure, a soft surface will deform. We calculate the deformation profile for a fluid membrane and show that close to the grafting point, this profile assumes a cone-like shape, independently of the boundary conditions. Interactions between different polymers are also mediated by the membrane deformation. This pair-additive potential is attractive for chains grafted on the same side of the membrane and repulsive otherwise.
The statistical mechanics of polymers grafted on surfaces has been the subject of intense research activity because of many potential applications. In this paper, we analytically investigate the conformational changes caused by a single cross-link on
We report Monte Carlo simulations of the self-assembly of supramolecular polymers based on a model of patchy particles. We find a first-order phase transition, characterized by hysteresis and nucleation, toward a solid bundle of polymers, of length m
We present the results of analytic calculations and numerical simulations of the behaviour of a new class of chain molecules which we call thick polymers. The concept of the thickness of such a polymer, viewed as a tube, is encapsulated by a special
Binary mixtures of semiflexible polymers with the same chain length but different persistence lengths separate into two coexisting different nematic phases when the osmotic pressure of the lyotropic solution is varied. Molecular Dynamics simulations
Recent experimental developments showed that the use of the radiation pressure, induced by a continuous laser wave, to control fluid-fluid interface deformations at the microscale, represents a very promising alternative to electric or magnetic actua