ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transition to bundles of flexible supramolecular polymers

145   0   0.0 ( 0 )
 نشر من قبل Bastiaan A.H. Huisman
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report Monte Carlo simulations of the self-assembly of supramolecular polymers based on a model of patchy particles. We find a first-order phase transition, characterized by hysteresis and nucleation, toward a solid bundle of polymers, of length much greater than the average gas phase length. We argue that the bundling transition is the supramolecular equivalent of the sublimation transition, that results from a weak chain-chain interaction. We provide a qualitative equation of state that gives physical insight beyond the specific values of the parameters used in our simulations.



قيم البحث

اقرأ أيضاً

134 - S. Das , N. Kennedy , 2020
We perform numerical simulations of an active fully flexible self-avoiding polymer as a function of the quality of the embedding solvent described in terms of an effective monomer-monomer interaction. Specifically, by extracting the Flory exponent of the active polymer under different conditions, we are able to pin down the location of the coil-globule transition for different strength of the active forces. Remarkably, we find that a simple rescaling of the temperature is capable of qualitatively capture the dependence of the $Theta$-point of the polymer with the amplitude of the active fluctuations. We discuss the limits of this mapping, and suggest that a negative active pressure between the monomers, not unlike the one that has already been found in suspensions of active hard spheres, may also be present in active polymers.
146 - Chiu Fan Lee 2008
We consider a free energy functional on the monomer density function that is suitable for the study of coil-globule transition. We demonstrate, with explicitly stated assumptions, why the entropic contribution is in the form of the Kullback-Leibler d istance, and that the energy contribution is given by two-body and three-body terms. We then solve for the free energy analytically on a set of trial density functions, and reproduce de Gennes classical theory on polymer coil-globule transition. We then discuss how our formalism can be applied to study polymer dynamics from the perspective of dynamical density function theory.
In this paper, we study the equilibrium properties of polymer chains end-tethered to a fluid membrane. The loss of conformational entropy of the polymer results in an inhomogeneous pressure field that we calculate for gaussian chains. We estimate the effects of excluded volume through a relation between pressure and concentration. Under the polymer pressure, a soft surface will deform. We calculate the deformation profile for a fluid membrane and show that close to the grafting point, this profile assumes a cone-like shape, independently of the boundary conditions. Interactions between different polymers are also mediated by the membrane deformation. This pair-additive potential is attractive for chains grafted on the same side of the membrane and repulsive otherwise.
We investigate the existence and location of the surface phase known as the Surface-Attached Globule (SAG) conjectured previously to exist in lattice models of three-dimensional polymers when they are attached to a wall that has a short range potenti al. The bulk phase, where the attractive intra-polymer interactions are strong enough to cause a collapse of the polymer into a liquid-like globule and the wall either has weak attractive or repulsive interactions, is usually denoted Desorbed-Collapsed or DC. Recently this DC phase was conjectured to harbour two surface phases separated by a boundary where the bulk free energy is analytic while the surface free energy is singular. The surface phase for more attractive values of the wall interaction is the SAG phase. We discuss more fully the properties of this proposed surface phase and provide Monte Carlo evidence for self-avoiding walks up to length 256 that this surface phase most likely does exist. Importantly, we discuss alternatives for the surface phase boundary. In particular, we conclude that this boundary may lie along the zero wall interaction line and the bulk phase boundaries rather than any new phase boundary curve.
The interplay of nematic order and phase separation in solutions of semiflexible polymers in solvents of variable quality is investigated by density functional theory (DFT) and molecular dynamics (MD) simulations. We studied coarse-grained models, wi th a bond-angle potential to control chain stiffness, for chain lengths comparable to the persistence length of the chains. We varied both the density of the monomeric units and the effective temperature that controls the quality of the implicit solvent. For very stiff chains only a single transition from an isotropic fluid to a nematic is found, with a phase diagram of swan-neck topology. For less stiff chains, however, also unmixing between isotropic fluids of different concentration, ending in a critical point, occurs for temperatures above a triple point. The associated critical behavior is examined in the MD simulations and found compatible with Ising universality. Apart from this critical behavior, DFT calculations agree qualitatively with the MD simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا