ﻻ يوجد ملخص باللغة العربية
Soft Gamma-ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are interpreted as young highly magnetized neutron stars (NSs). Their X-ray luminosity in quiescence, exceeding 10^{35} erg s^{-1} cannot be explained as due to cooling of a highly magnetized NS, but requires as an extra heat source the decay of its magnetic field (MF). We study numerically the coupled evolution of the MF, temperature and spin period under the assumption that the currents maintaining the field are confined in the crust of the star. The decay of the field depends on the field strength itself (Hall-drift), on the temperature and injects heat into the star, but is controlled by neutrino emission. Finally we consider the spin down from magnetic dipole braking with this decaying field to track the long term evolution. We find reasonable initial conditions for the MF strength and structure to explain their current observational values both of their rotational period, its time derivative and the X-ray luminosity of AXPs and SGRs.the X-ray luminosity of AXPs and SGRs.
We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the
Population synthesis studies constitute a powerful method to reconstruct the birth distribution of periods and magnetic fields of the pulsar population. When this method is applied to populations in different wavelengths, it can break the degeneracy
Central compact objects are young neutron stars emitting thermal X-rays with bolometric luminosities $L_X$ in the range $10^{32}$-$10^{34}$ erg/s. Gourgouliatos, Hollerbach and Igoshev recently suggested that peculiar emission properties of central c
The strong magnetic field of neutron stars is intimately coupled to the observed temperature and spectral properties, as well as to the observed timing properties (distribution of spin periods and period derivatives). Thus, a proper theoretical and n
We revisit in this work a model for repeating Fast Radio Bursts based of the release of energy provoked by the magnetic field dynamics affecting a magnetars crust. We address the basic needs of such a model by solving the propagation approximately, a