ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Magneto-thermal Simulations of Tangled Crustal Magnetic Field in Central Compact Objects

61   0   0.0 ( 0 )
 نشر من قبل Andrei Igoshev Petrovich
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Central compact objects are young neutron stars emitting thermal X-rays with bolometric luminosities $L_X$ in the range $10^{32}$-$10^{34}$ erg/s. Gourgouliatos, Hollerbach and Igoshev recently suggested that peculiar emission properties of central compact objects can be explained by tangled magnetic field configurations formed in a stochastic dynamo during the proto-neutron star stage. In this case the magnetic field consists of multiple small-scale components with negligible contribution of global dipolar field. We study numerically three-dimensional magneto-thermal evolution of tangled crustal magnetic fields in neutron stars. We find that all configurations produce complicated surface thermal patterns which consist of multiple small hot regions located at significant separations from each other. The configurations with initial magnetic energy of $2.5-10times 10^{47}$ erg have temperatures of hot regions that reach $approx 0.2$ keV, to be compared with the bulk temperature of $approx 0.1$ keV in our simulations with no cooling. A factor of two in temperature is also seen in observations of central compact objects. The hot spots produce periodic modulations in light curve with typical amplitudes of $leq 9-11$ %. Therefore, the tangled magnetic field configuration can explain thermal emission properties of some central compact objects.



قيم البحث

اقرأ أيضاً

88 - U. Geppert 1999
Soft Gamma-ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are interpreted as young highly magnetized neutron stars (NSs). Their X-ray luminosity in quiescence, exceeding 10^{35} erg s^{-1} cannot be explained as due to cooling of a highly ma gnetized NS, but requires as an extra heat source the decay of its magnetic field (MF). We study numerically the coupled evolution of the MF, temperature and spin period under the assumption that the currents maintaining the field are confined in the crust of the star. The decay of the field depends on the field strength itself (Hall-drift), on the temperature and injects heat into the star, but is controlled by neutrino emission. Finally we consider the spin down from magnetic dipole braking with this decaying field to track the long term evolution. We find reasonable initial conditions for the MF strength and structure to explain their current observational values both of their rotational period, its time derivative and the X-ray luminosity of AXPs and SGRs.the X-ray luminosity of AXPs and SGRs.
154 - Wynn C. G. Ho 2021
We present analysis of multiple Chandra and XMM-Newton spectra, separated by 9-19 years, of four of the youngest central compact objects (CCOs) with ages < 2500 yr: CXOU J232327.9+584842 (Cassiopeia A), CXOU J160103.1-513353 (G330.2+1.0), 1WGA J1713. 4-3949 (G347.3-0.5), and XMMU J172054.5-372652 (G350.1-0.3). By fitting these spectra with thermal models, we attempt to constrain each CCOs long-term cooling rate, composition, and magnetic field. For the CCO in Cassiopeia A, 14 measurements over 19 years indicate a decreasing temperature at a ten-year rate of 2.2+/-0.2 or 2.8+/-0.3 percent (1sigma error) for a constant or changing X-ray absorption, respectively. We obtain cooling rate upper limits of 17 percent for CXOU J160103.1-513353 and 6 percent for XMMU J172054.5-372652. For the oldest CCO, 1WGA J1713.4-3949, its temperature seems to have increased by 4+/-2 percent over a ten year period. Assuming each CCOs preferred distance and an emission area that is a large fraction of the total stellar surface, a non-magnetic carbon atmosphere spectrum is a good fit to spectra of all four CCOs. If distances are larger and emission areas are somewhat smaller, then equally good spectral fits are obtained using a hydrogen atmosphere with B <= 7x10^10 G or B >= 10^12 G for CXOU J160103.1-513353, B <= 10^10 G or B >= 10^12 G for XMMU J172054.5-372652, and non-magnetic hydrogen atmosphere for 1WGA J1713.4-3949. In a unified picture of CCO evolution, our results suggest most CCOs, and hence a sizable fraction of young neutron stars, have a surface magnetic field that is low early in their life but builds up over several thousand years.
Most young neutron stars belonging to the class of Central Compact Objects in supernova remnants (CCOs) do not have known periodicities. We investigated seven such CCOs to understand the common reasons for the absence of detected pulsations. Making u se of XMM-Newton, Chandra, and NICER observations, we perform a systematic timing and spectral analysis to derive updated sensitivity limits for both periodic signals and multi-temperature spectral components that could be associated with radiation from hotspots on the neutron star surface. Based on these limits, we then investigated for each target the allowed viewing geometry that could explain the lack of pulsations. We estimate it is unlikely ($< 10^{-6}$) to attribute that we do not see pulsations to an unfavorable viewing geometry for five considered sources. Alternatively, the carbon atmosphere model, which assumes homogeneous temperature distribution on the surface, describes the spectra equally well and provides a reasonable interpretation for the absence of detected periodicities within current limits. The unusual properties of CCOs with respect to other young neutron stars could suggest a different evolutionary path, as that proposed for sources experiencing episodes of significant fallback accretion after the supernova event.
289 - Andrea De Luca 2007
Central Compact Objects (CCOs) are a handful of soft X-ray sources located close to the centers of Supernova Remnants and supposed to be young, radio-quiet Isolated Neutron Stars (INSs). A clear understanding of their physics would be crucial in orde r to complete our view of the birth properties of INSs. We will review the phenomenologies of CCOs, underlining the most important, recent results, and we will discuss the possible relationships of such sources with other classes of INSs.
Context. Central compact objects (CCOs) are a peculiar class of neutron stars, primarily encountered close to the center of young supernova remnants (SNRs) and characterized by thermal X-ray emission. Aims. Our goal is to perform a systematic study o f the proper motion of all known CCOs with appropriate data available. In addition, we aim to measure the expansion of three SNRs within our sample to obtain a direct handle on their kinematics and age. Methods. We analyze multiple archival Chandra data sets, consisting of HRC and ACIS observations separated by temporal baselines between 8 and 15 years. In order to correct for systematic astrometric uncertainties, we establish a reference frame using X-ray detected sources in Gaia DR2, to provide accurate proper motion estimates for our target CCOs. Complementarily, we use our coaligned data sets to trace the expansion of three SNRs by directly measuring the spatial offset of various filaments and ejecta clumps between different epochs. Results. In total, we present new proper motion measurements for six CCOs, among which we do not find any indication of a hypervelocity object. We tentatively identify direct signatures of expansion for the SNRs G15.9+0.2 and Kes 79, at estimated significance of $2.5sigma$ and $2sigma$, respectively. Moreover, we confirm recent results by Borkowski et al., measuring the rapid expansion of G350.1$-$0.3 at almost $6000,{rm km,s^{-1}}$, which places its maximal age at $600-700$ years. The observed expansion, combined with the rather small proper motion of its CCO, implies the need for a very inhomogeneous circumstellar medium to explain the highly asymmetric appearance of the SNR. Finally, for the SNR RX J1713.7$-$3946, we combine previously published expansion measurements with our measurement of the CCOs proper motion to obtain a constraining upper limit of $1700$ years on the systems age.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا