ﻻ يوجد ملخص باللغة العربية
The origin of gamma-ray bursts (GRBs) has been enigmatic since their discovery. The situation improved dramatically in 1997, when the rapid availability of precise coordinates for the bursts allowed the detection of faint optical and radio afterglows - optical spectra thus obtained have demonstrated conclusively that the bursts occur at cosmological distances. But, despite efforts by several groups, optical detection has not hitherto been achieved during the brief duration of a burst. Here we report the detection of bright optical emission from GRB990123 while the burst was still in progress. Our observations begin 22 seconds after the onset of the burst and show an increase in brightness by a factor of 14 during the first 25 seconds; the brightness then declines by a factor of 100, at which point (700 seconds after the burst onset) it falls below our detection threshold. The redshift of this burst, approximately 1.6, implies a peak optical luminosity of 5 times 10^{49} erg per second. Optical emission from gamma-ray bursts has been generally thought to take place at the shock fronts generated by interaction of the primary energy source with the surrounding medium, where the gamma-rays might also be produced. The lack of a significant change in the gamma-ray light curve when the optical emission develops suggests that the gamma-rays are not produced at the shock front, but closer to the site of the original explosion.
The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes -- the activity of the central engine gives rise to the high-energy emission of the burst through internal shocking and the subseq
Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterised by an initial phase of bright and highly variable radiation in the keV-MeV band that is lik
We report the optical polarization of a gamma ray burst (GRB) afterglow, obtained 203 seconds after the initial burst of gamma rays from GRB 060418, using a ring polarimeter on the robotic Liverpool Telescope. Our robust (2-sigma) upper limit on the
We report on the discovery of two emission features observed in the X-ray spectrum of the afterglow of the gamma-ray burst (GRB) of 16 Dec. 1999 by the Chandra X-Ray Observatory. These features are identified with the Ly$_{alpha}$ line and the narrow
Long $rm gamma$-ray bursts (GRBs) are produced by the dissipation of ultra-relativistic jets launched by newly-born black holes after a collapse of massive stars. Right after the luminous and highly variable $gamma$-ray emission, the multi-wavelength