ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of X-ray lines from a Gamma-Ray Burst (GRB991216): Evidence of Moving Ejecta from the Progenitor

226   0   0.0 ( 0 )
 نشر من قبل Luigi Piro
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the discovery of two emission features observed in the X-ray spectrum of the afterglow of the gamma-ray burst (GRB) of 16 Dec. 1999 by the Chandra X-Ray Observatory. These features are identified with the Ly$_{alpha}$ line and the narrow recombination continuum by hydrogenic ions of iron at a redshift $z=1.00pm0.02$, providing an unambiguous measurement of the distance of a GRB. Line width and intensity imply that the progenitor of the GRB was a massive star system that ejected, before the GRB event, $approx 0.01 Ms$ of iron at a velocity $approx 0.1 c$, probably by a supernova explosion.

قيم البحث

اقرأ أيضاً

The origin of gamma-ray bursts (GRBs) has been enigmatic since their discovery. The situation improved dramatically in 1997, when the rapid availability of precise coordinates for the bursts allowed the detection of faint optical and radio afterglows - optical spectra thus obtained have demonstrated conclusively that the bursts occur at cosmological distances. But, despite efforts by several groups, optical detection has not hitherto been achieved during the brief duration of a burst. Here we report the detection of bright optical emission from GRB990123 while the burst was still in progress. Our observations begin 22 seconds after the onset of the burst and show an increase in brightness by a factor of 14 during the first 25 seconds; the brightness then declines by a factor of 100, at which point (700 seconds after the burst onset) it falls below our detection threshold. The redshift of this burst, approximately 1.6, implies a peak optical luminosity of 5 times 10^{49} erg per second. Optical emission from gamma-ray bursts has been generally thought to take place at the shock fronts generated by interaction of the primary energy source with the surrounding medium, where the gamma-rays might also be produced. The lack of a significant change in the gamma-ray light curve when the optical emission develops suggests that the gamma-rays are not produced at the shock front, but closer to the site of the original explosion.
Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterised by an initial phase of bright and highly variable radiation in the keV-MeV band that is lik ely produced within the jet and lasts from milliseconds to minutes, known as the prompt emission. Subsequently, the interaction of the jet with the external medium generates external shock waves, responsible for the afterglow emission, which lasts from days to months, and occurs over a broad energy range, from the radio to the GeV bands. The afterglow emission is generally well explained as synchrotron radiation by electrons accelerated at the external shock. Recently, an intense, long-lasting emission between 0.2 and 1 TeV was observed from the GRB 190114C. Here we present the results of our multi-frequency observational campaign of GRB~190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from $5times10^{-6}$ up to $10^{12}$,eV. We find that the broadband spectral energy distribution is double-peaked, with the TeV emission constituting a distinct spectral component that has power comparable to the synchrotron component. This component is associated with the afterglow, and is satisfactorily explained by inverse Compton upscattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed TeV component are not atypical, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
102 - J. N. Reeves 2002
Since their identification with cosmological distances, Gamma-ray bursts (GRBs) have been recognised as the most energetic phenomena in the Universe, with an isotropic burst energy as high as 10^54 ergs. However, the progenitors responsible for the b ursts remain elusive, favoured models ranging from a neutron star binary merger, to the collapse of a massive star. Crucial to our understanding of the origins of GRBs is the study of the afterglow emission, where spectroscopy can reveal details of the environment of the burst. Here we report on an XMM-Newton observation of the X-ray afterglow of GRB 011211. The X-ray spectrum reveals evidence for emission lines of Magnesium, Silicon, Sulphur, Argon, Calcium, and possibly Nickel, arising in enriched material with an outflow velocity of order 0.1c. This is the first direct measurement of outflowing matter in a gamma ray burst. The observations strongly favour models where a supernova explosion from a massive stellar progenitor precedes the burst event and is responsible for the outflowing matter.
85 - A. Panaitescu 2020
We derive basic analytical results for the timing and decay of the GRB-counterpart and delayed-afterglow light-curves for a brief emission episode from a relativistic surface endowed with angular structure, consisting of a uniform Core of size theta_ c (Lorentz factor Gamma_c and surface emissivity i_nu are angle-independent) and an axially-symmetric power-law Envelope (Gamma ~ theta^{-g}). In this Large-Angle Emission (LAE) model, radiation produced during the prompt emission phase (GRB) at angles theta > theta_c arrives at observer well after the burst (delayed emission). The dynamical time-range of the very fast-decaying GRB tail and of the flat afterglow plateau, and the morphology of GRB counterpart/afterglow, are all determined by two parameters: the Cores parameter Gamma_c*theta_c and the Envelopes Lorentz factor index g, leading to three types of light-curves that display three post-GRB phases (type 1: tail, plateau/slow-decay, post-plateau/normal-decay), two post-GRB phases (type 2: tail and fast-decay), or just one (type 3: normal decay). We show how X-ray light-curve features can be used to determine Core and Envelope dynamical and spectral parameters. Testing of the LAE model is done using the Swift/XRT X-ray emission of two afterglows of type 1 (060607A, 061121), one of type 2 (061110A), and one of type 3 (061007). We find that the X-ray afterglows with plateaus require an Envelope Lorentz factor Gamma ~ theta^{-2} and a comoving-frame emissivity i_nu ~ theta^2, thus, for a typical afterglow spectrum F_nu ~ nu^{-1}, the lab-frame energy release is uniform over the emitting surface.
Optical Transients from gamma-ray burst sources, in addition to offering a distance determination, convey important information on the physics of the emission mechanism, and perhaps also about the underlying energy source. As the gamma-ray phenomenon is extremely diverse, with time scales spanning several orders of magnitude, some diversity in optical counterpart signatures appears plausible. We have studied the Optical Transient, which accompanied the gamma-ray burst of May 8, 1997 (GRB 970508). Observations conducted at the 2.5-m Nordic Optical Telescope (NOT) and the 2.2-m telescope at the German-Spanish Calar Alto observatory (CAHA) cover the time interval starting 3 hours 5 minutes to 96 days after the high energy event. This brackets all other published observations, including radio. When analyzed in conjunction with optical data from other observatories, evidence emerges for a composite light curve. The first interval, from 3 to 8 hours after the event was characterized by a constant, or slowly declining brightness. At a later moment the brightness started increasing rapidly, and reached a maximum approximately 40 hours after the GRB. From that moment the GRB brightness decayed approximately as a power-law of index -1.21. The last observation, after 96 days, m_R = 24.28+-0.10, is brighter than the extrapolated power-law, and hints that a constant component, m_R = 25.50+-0.40 is present. The OT is unresolved (FWHM 0.83) at the faintest magnitude level. The brightness of the optical transient, its duration and the general shape of the light curve sets this source apart from the single other optical transient known, that of the February 28, 1997 event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا