ﻻ يوجد ملخص باللغة العربية
The quasar in the Hubble Deep Field South (HDFS), J2233-606 (z=2.23) has been exhaustively observed by ground based telescopes and by the STIS spectrograph on board the Hubble Space Telescope at low, medium and high resolution in the spectral interval from 1120 A to 10000 A. This very large base-line represents a unique opportunity to study in detail the distribution of clouds associated with emitting structures in the field of the quasar and in nearby fields already observed as part of the HDFS campaign. Here we report the main properties of the Lyman-alpha clouds in the intermediate redshift range 1.20-2.20, where our present knowledge has been complicated by the difficulty in producing good data. The number density is shown to be higher than what is expected by extrapolating the results from both lower and higher redshifts: 63pm8 lines with log N_{HI}geq14.0 are found (including metal systems) at <z>=1.7, to be compared with ~40 lines predicted by extrapolating from previous studies. The redshift distribution of the Lyman-alpha clouds shows a region spanning z=1.383-1.460 (comoving size of 94 h^{-1}_{65} Mpc, Omega_o=1) with a low density of absorption lines; we detect 5 lines in this region, compared with the 16 expected from an average density along the line of sight. The two point correlation function shows a positive signal up to scales of about 3 h^{-1}_{65} Mpc and an amplitude that is larger for larger HI column densities. The average Doppler parameter is about 27 km/s, comparable to the mean value found at z > 3, thus casting doubts on the temperature evolution of the Lyman-alpha clouds.
We explore the use of Deep Learning to infer physical quantities from the observable transmitted flux in the Lyman-alpha forest. We train a Neural Network using redshift z=3 outputs from cosmological hydrodynamic simulations and mock datasets constru
The Hubble Deep Field-South observations targeted a high-galactic-latitude field near QSO J2233-606. We present WFPC2 observations of the field in four wide bandpasses centered at roughly 300, 450, 606, and 814 nm. Observations, data reduction proced
We use hydrodynamic simulations to predict correlations between Lya forest absorption and galaxies at redshift z~3. The probability distribution function (PDF) of Lya flux decrements shifts systematically towards higher values in the vicinity of gala
The angular positions of quasars are deflected by the gravitational lensing effect of foreground matter. The Lyman-alpha forest seen in the spectra of these quasars is therefore also lensed. We propose that the signature of weak gravitational lensing
We describe a robust Bayesian statistical method for determining Lyman alpha forest cloud sizes in spherical and in thin disk geometries, using absorption in adjacent sightlines toward closely separated QSO pairs and groups, apply this method to the