ترغب بنشر مسار تعليمي؟ اضغط هنا

WFPC2 Observations of the Hubble Deep Field-South

249   0   0.0 ( 0 )
 نشر من قبل Stefano Casertano
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Stefano Casertano




اسأل ChatGPT حول البحث

The Hubble Deep Field-South observations targeted a high-galactic-latitude field near QSO J2233-606. We present WFPC2 observations of the field in four wide bandpasses centered at roughly 300, 450, 606, and 814 nm. Observations, data reduction procedures, and noise properties of the final images are discussed in detail. A catalog of sources is presented, and the number counts and color distributions of the galaxies are compared to a new catalog of the HDF-N that has been constructed in an identical manner. The two fields are qualitatively similar, with the galaxy number counts for the two fields agreeing to within 20%. The HDF-S has more candidate Lyman-break galaxies at z > 2 than the HDF-N. The star-formation rate per unit volume computed from the HDF-S, based on the UV luminosity of high-redshift candidates, is a factor of 1.9 higher than from the HDF-N at z ~ 2.7, and a factor of 1.3 higher at z ~ 4.

قيم البحث

اقرأ أيضاً

Wide-field surveys are a commonly-used method for studying thousands of objects simultaneously, to investigate, e.g., the joint evolution of star-forming galaxies and active galactic nuclei. VLBI observations can yield valuable input to such studies because they are able to identify AGN. However, VLBI observations of large swaths of the sky are impractical using standard methods, because the fields of view of VLBI observations are of the order of 10 or less. We have embarked on a project to carry out Very Long Baseline Array (VLBA) observations of all 96 known radio sources in one of the best-studied areas in the sky, the Chandra Deep Field South (CDFS). The challenge was to develop methods which could significantly reduce the amount of observing (and post-processing) time. We have developed an extension to the DiFX software correlator which allows one to correlate hundreds of positions within the primary beams. This extension enabled us to target many sources, at full resolution and high sensitivity, using only a small amount of observing time. The combination of wide fields-of-view and high sensitivity across the field in this survey is unprecedented. We have observed with the VLBA a single pointing containing the Chandra Deep Field South, in which 96 radio sources were known from previous observations with the ATCA. From our input sample, 20 were detected with the VLBA. The majority of objects have flux densities in agreement with arcsec-scale observations, implying that their radio emission comes from very small regions. One VLBI-detected object had earlier been classified as a star-forming galaxy. Comparing the VLBI detections to sources found in sensitive, co-located X-ray observations we find that X-ray detections are not a good indicator for VLBI detections. Wide-field VLBI survey science is now coming of age.
The Australia Telescope Hubble Deep Field-South (ATHDFS) survey of the Hubble Deep Field South reaches sensitivities of ~10 miceoJyJy at 1.4, 2.5, 5.2 and 8.7 GHz, making the ATHDFS one of the deepest surveys ever performed with the Australia Telesco pe Compact Array. Here we present the optical identifications of the ATHDFS radio sources using data from the literature. We find that ~66% of the radio sources have optical counterparts to I = 23.5 mag. Deep HST imaging of the area identifies a further 12% of radio sources. We present new spectroscopic observations for 98 of the radio sources, and supplement these spectroscopic redshifts with photometric ones calculated from 5-band optical imaging. The host galaxy colors and radio-to-optical ratios indicate that low luminosity (or radio quiet) AGN make up a significant proportion of the sub-mJy radio population, a result which is in accordance with a number of other deep radio studies. The radio-to-optical ratios of the bright (S_1.4GHz > 1 mJy) sources is consistent with a bimodal distribution.
153 - M. Stiavelli 1998
The combined use of the ESO Very Large Telescope (VLT) UT1 Science Verification (SV) images and of the Hubble Space Telescope (HST) Hubble Deep Field South observations allows us to strengthen the identification as a candidate elliptical galaxy of th e Extremely Red Object HDFS 223251-603910 previously identified by us on the basis of NICMOS and Cerro Tololo Interamerican Observatory imaging. The photometry presented here includes VLT data in U, B, V, R, I, a STIS unfiltered image, NICMOS J, H, and K band data, thus combining the 16.5 hours of VLT SV exposures with 101 hours of HST observing. The object is detected in all images except the VLT U band and is one of the reddest known with B-K=9.7+-0.5. We consider a wide range of models with different ages, metallicities, star formation histories and dust content, and conclude that the observed spectral energy distribution agrees best with that of an old elliptical galaxy at redshift just below 2. Alternative possibilities are discussed in light of their likelihood and of the perspective of spectroscopic confirmation.
89 - S. Savaglio 1999
The quasar in the Hubble Deep Field South (HDFS), J2233-606 (z=2.23) has been exhaustively observed by ground based telescopes and by the STIS spectrograph on board the Hubble Space Telescope at low, medium and high resolution in the spectral interva l from 1120 A to 10000 A. This very large base-line represents a unique opportunity to study in detail the distribution of clouds associated with emitting structures in the field of the quasar and in nearby fields already observed as part of the HDFS campaign. Here we report the main properties of the Lyman-alpha clouds in the intermediate redshift range 1.20-2.20, where our present knowledge has been complicated by the difficulty in producing good data. The number density is shown to be higher than what is expected by extrapolating the results from both lower and higher redshifts: 63pm8 lines with log N_{HI}geq14.0 are found (including metal systems) at <z>=1.7, to be compared with ~40 lines predicted by extrapolating from previous studies. The redshift distribution of the Lyman-alpha clouds shows a region spanning z=1.383-1.460 (comoving size of 94 h^{-1}_{65} Mpc, Omega_o=1) with a low density of absorption lines; we detect 5 lines in this region, compared with the 16 expected from an average density along the line of sight. The two point correlation function shows a positive signal up to scales of about 3 h^{-1}_{65} Mpc and an amplitude that is larger for larger HI column densities. The average Doppler parameter is about 27 km/s, comparable to the mean value found at z > 3, thus casting doubts on the temperature evolution of the Lyman-alpha clouds.
94 - A. M. Koekemoer 2001
We present HST/WFPC2 observations of a well-defined sample of 40 X-ray sources with X-ray fluxes above the detection threshold of the full 1 Msec Chandra Deep Field South (CDFS). The sensitivity and spatial resolution of our HST observations are suff icient to detect the optical counterparts of 37 of the X-ray sources, yielding information on their morphologies and environments. In this paper we extend the results obtained in our previous study on the 300 ks CDFS X-ray data (Schreier et al. 2001, Paper I). Specifically, we show that the optical counterparts to the X-ray sources are divided into two distinct populations: 1) an optically faint group with relatively blue colors, similar to the faint blue field galaxy population, and 2) an optically brighter group, including resolved galaxies with average colors significantly redder than the corresponding bright field galaxy population. The brighter objects comprise a wide range of types, including early and late type galaxies, starbursts, and AGN. By contrast, we show that the faint blue X-ray population are most consistent with being predominantly Type 2 AGN of low to moderate luminosity, located at higher redshifts (z ~ 1 - 2). This conclusion is supported by luminosity function models of the various classes of objects. Hence, the combination of deep X-ray data with the high spatial resolution of HST are for the first time allowing us to probe the faint end of the AGN luminosity function at cosmologically interesting redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا