ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of Galaxy Clusters: Mass and Correlation Functions

53   0   0.0 ( 0 )
 نشر من قبل Fabio Governato
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Governato




اسأل ChatGPT حول البحث

We analyse parallel N-body simulations of three Cold Dark Matter (CDM) universes to study the abundance and clustering of galaxy clusters. The simulations cover a volume comparable to the forthcoming SDSS. We are able to make robust measurements of cluster properties to a redshift larger than unity. We extract halos using two independent, public domain group finders (FOF & HOP) and find consistent results. The correlation function of clusters is in very good agreement with a simple analytic prescription based upon a Lagrangian biasing scheme developed by Mo & White (1996) and the Press-Schechter (PS) formalism for the mass function. The R_0--D_c relation for the open CDM model is in good agreement with the results from the APM Cluster Survey. The SCDM universe shows a robust deviation in the shape and evolution of the mass function when compared with that predicted by the PS formalism. Critical models with a low sigma_8 normalization or small shape parameter Gamma show an excess of massive clusters compared with the PS prediction. When cluster normalized, the SCDM universe at z =1 contains 10 times more clusters with temperatures greater than 7keV, compared with the PS prediction. The agreement between the analytic and N-body mass functions of SCDM can be improved if the value of the delta_c (the extrapolated linear theory threshold for collapse) is revised to be $ delta_c(z) = 1.685[(0.7/sigma_8)(1+z)]^{-0.125}. Our best estimate for the amplitude of fluctuations inferred from the local cluster abundance for SCDM is sigma_{8} = 0.5 pm 0.04. However, the discrepancy between the temperature function predicted in a critical density universe and that observed at z=0.33 (Henry et al. 1998) remains. (abridged)


قيم البحث

اقرأ أيضاً

We compute covariance matrices for many observed estimates of the stellar mass function of galaxies from $z=0$ to $zapprox 4$, and for one estimate of the projected correlation function of galaxies split by stellar mass at $zlesssim 0.5$. All covaria nce matrices include contributions due to large scale structure, the preference for galaxies to be found in groups and clusters, and for shot noise. These covariance matrices are made available for use in constraining models of galaxy formation and the galaxy-halo connection.
A large scale SPH+N-body simulation (GADGET) of the concordance LCDM universe is used to investigate orientation and angular momentum of galaxy clusters at z=0 in connection with their recent accretion histories. The basic cluster sample comprises th e 3000 most massive friends-of-friends halos found in the 500 Mpc/h simulation box. Two disjoint sub-samples are constructed, using the mass ratio of the two most massive progenitors at z=0.5 m_2 / m_1 (m_1 < m_2), namely a recent major merger sample and a steady accretion mode sample. The mass of clusters in the merger sample is on average ~43% larger than the mass of the two progenitors (m_1 + m_2), whereas in the steady accretion mode sample a smaller increase of ~25% is found. The separation vector connecting the two most massive progenitor halos at z=0.5 is strongly correlated with the orientation of the cluster at z=0. The angular momentum of the clusters in the recent major merger sample tends to be parallel to orbital angular momentum of the two progenitors, whereas the angular momentum of the steady accretion mode sample is mainly determined by the angular momentum of the most massive progenitor. The long range correlations for the major and the minor principal axes of cluster pairs extend to distances of ~100 Mpc/h. Weak angular momentum correlations are found for distances < 20 Mpc/h. Within these ranges the major axes tend to be aligned with the connecting line of the cluster pairs whereas minor axes and angular momenta tend to be perpendicular to this line. A separate analysis of the two sub-samples reveals that the long range correlations are independent of the mass accretion mode. Thus orientation and angular momentum of galaxy clusters is mainly determined by the accretion along the filaments independently of the particular accretion mode.
57 - P. J. E. Peebles 2001
Correlation functions and related statistics have been favorite measures of the distributions of extragalactic objects ever since people started analyzing the clustering of the galaxies in the 1930s. I review the evolving reasons for this choice, and comment on some of the present issues in the application and interpretation of these statistics, with particular attention to the question of how closely galaxies trace mass.
We present measurements of the excess mass-to-light ratio measured aroundMaxBCG galaxy clusters observed in the SDSS. This red sequence cluster sample includes objects from small groups with masses ranging from ~5x10^{12} to ~10^{15} M_{sun}/h. Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean Delta rho(r) = rho(r) - bar{rho} for clusters in bins of richness and optical luminosity. We also measure the excess luminosity density Delta l(r) = l(r) - bar{l} measured in the z=0.25 i-band. For both mass and light, we de-project the profiles to produce 3D mass and light profiles over scales from 25 kpc/ to 22 Mpc/h. From these profiles we calculate the cumulative excess mass M(r) and excess light L(r) as a function of separation from the BCG. On small scales, where rho(r) >> bar{rho}, the integrated mass-to-light profile may be interpreted as the cluster mass-to-light ratio. We find the M/L_{200}, the mass-to-light ratio within r_{200}, scales with cluster mass as a power law with index 0.33+/-0.02. On large scales, where rho(r) ~ bar{rho}, the M/L approaches an asymptotic value independent of cluster richness. For small groups, the mean M/L_{200} is much smaller than the asymptotic value, while for large clusters it is consistent with the asymptotic value. This asymptotic value should be proportional to the mean mass-to-light ratio of the universe <M/L>. We find <M/L>/b^2_{ml} = 362+/-54 h (statistical). There is additional uncertainty in the overall calibration at the ~10% level. The parameter b_{ml} is primarily a function of the bias of the L <~ L_* galaxies used as light tracers, and should be of order unity. Multiplying by the luminosity density in the same bandpass we find Omega_m/b^2_{ml} = 0.02+/-0.03, independent of the Hubble parameter.
We present a comparison of optical and X-ray properties of galaxy clusters in the northern sky. We determine the recovery rate of X-ray detected clusters in the optical as a function of richness, redshift and X-ray luminosity, showing that the missed clusters are typically low contrast systems when observed optically. We employ four different statistical tests to test for the presence of substructure using optical two-dimensional data, finding that approximately 35% of the clusters show strong signs of substructure. However, the results are test-dependent, with variations also due to the magnitude range and radius utilized.We have also performed a comparison of X-ray luminosity and temperature with optical galaxy counts (richness). We find that the slope and scatter of the relations between richness and the X-ray properties are heavily dependent on the density contrast of the clusters. The selection of substructure-free systems does not improve the correlation between X-ray luminosity and richness, but this comparison also shows much larger scatter than one obtained using the X-ray temperature. In the latter case, the sample is significantly reduced because temperature measurements are available only for the most massive (and thus high contrast) systems. However, the comparison between temperature and richness is very sensitive to the exclusion of clusters showing signs of substructure. The correlation of X-ray luminosity and richness is based on the largest sample to date ($sim$ 750 clusters), while tests involving temperature use a similar number of objects as previous works ($lsim$100). The results presented here are in good agreement with existing literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا