ﻻ يوجد ملخص باللغة العربية
A large scale SPH+N-body simulation (GADGET) of the concordance LCDM universe is used to investigate orientation and angular momentum of galaxy clusters at z=0 in connection with their recent accretion histories. The basic cluster sample comprises the 3000 most massive friends-of-friends halos found in the 500 Mpc/h simulation box. Two disjoint sub-samples are constructed, using the mass ratio of the two most massive progenitors at z=0.5 m_2 / m_1 (m_1 < m_2), namely a recent major merger sample and a steady accretion mode sample. The mass of clusters in the merger sample is on average ~43% larger than the mass of the two progenitors (m_1 + m_2), whereas in the steady accretion mode sample a smaller increase of ~25% is found. The separation vector connecting the two most massive progenitor halos at z=0.5 is strongly correlated with the orientation of the cluster at z=0. The angular momentum of the clusters in the recent major merger sample tends to be parallel to orbital angular momentum of the two progenitors, whereas the angular momentum of the steady accretion mode sample is mainly determined by the angular momentum of the most massive progenitor. The long range correlations for the major and the minor principal axes of cluster pairs extend to distances of ~100 Mpc/h. Weak angular momentum correlations are found for distances < 20 Mpc/h. Within these ranges the major axes tend to be aligned with the connecting line of the cluster pairs whereas minor axes and angular momenta tend to be perpendicular to this line. A separate analysis of the two sub-samples reveals that the long range correlations are independent of the mass accretion mode. Thus orientation and angular momentum of galaxy clusters is mainly determined by the accretion along the filaments independently of the particular accretion mode.
We analyse parallel N-body simulations of three Cold Dark Matter (CDM) universes to study the abundance and clustering of galaxy clusters. The simulations cover a volume comparable to the forthcoming SDSS. We are able to make robust measurements of c
Halo assembly bias is the secondary dependence of the clustering of dark-matter haloes on their assembly histories at fixed halo mass. This established dependence is expected to manifest itself on the clustering of the galaxy population, a potential
Super-Eddington mass accretion has been suggested as an efficient mechanism to grow supermassive black holes (SMBHs). We investigate the imprint left by the radiative efficiency of the super-Eddington accretion process on the clustering of quasars us
We use a statistical sample of galaxy clusters from a large cosmological $N$-body$+$hydrodynamics simulation to examine the relation between morphology, or shape, of the X-ray emitting intracluster medium (ICM) and the mass accretion history of the g
Globular clusters are collisional systems, meaning that the stars inside them interact on timescales much shorter than the age of the Universe. These frequent interactions transfer energy between stars and set up observable trends that tell the story