ترغب بنشر مسار تعليمي؟ اضغط هنا

Inhomogeneous Big-Bang Nucleosynthesis in Light of Recent Observations

133   0   0.0 ( 0 )
 نشر من قبل Hannu Kurki-Suonio
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider inhomogeneous big bang nucleosynthesis in light of the present observational situation. Different observations of He-4 and D disagree with each other, and depending on which set of observations one uses, the estimated primordial He-4 corresponds to a lower baryon density in standard big bang nucleosynthesis than what one gets from deuterium. Recent Kamiokande results rule out a favorite particle physics solution to this tension between He-4 and D. Inhomogeneous nucleosynthesis can alleviate this tension, but the more likely solution is systematics in the observations. The upper limit to Omega_b from inhomogeneous nucleosynthesis is higher than in standard nucleosynthesis, given that the distance scale of the inhomogeneity is near the optimal value, which maximizes effects of neutron diffusion. Possible sources of baryon inhomogeneity include the QCD and electroweak phase transitions. The distance scale of the inhomogeneities arising from the electroweak transition is too small for them to have a large effect on nucleosynthesis, but the effect may still be larger than some of the other small corrections recently incorporated to SBBN codes.



قيم البحث

اقرأ أيضاً

We reanalyze the allowed parameters for inhomogeneous big bang nucleosynthesis in light of the WMAP constraints on the baryon-to-photon ratio and a recent measurement which has set the neutron lifetime to be 878.5 +/- 0.7 +/- 0.3 seconds. For a set b aryon-to-photon ratio the new lifetime reduces the mass fraction of He4 by 0.0015 but does not significantly change the abundances of other isotopes. This enlarges the region of concordance between He4 and deuterium in the parameter space of the baryon-to-photon ratio and the IBBN distance scale. The Li7 abundance can be brought into concordance with observed He4 and deuterium abundances by using depletion factors as high as 9.3. The WMAP constraints, however, severely limit the allowed comoving (T = 100 GK) inhomogeneity distance scale to (1.3 - 2.6)x10^5 cm.
We report the results of a new accurate evaluation of light nuclei yields in primordial nucleosynthesis. All radiative effects, finite nucleon mass, thermal and plasma corrections are included in the proton to neutron conversion rates. The relic dens ities of He4, D and Li7 have been numerically obtained via a new updated version of the standard BBN code. In particular the theoretical uncertainty on He4 is reduced to the order of 0.1%.
Standard big bang nucleosynthesis (SBBN) has been remarkably successful, and it may well be the correct and sufficient account of what happened. However, interest in variations from the standard picture come from two sources: First, big bang nucleosy nthesis can be used to constrain physics of the early universe. Second, there may be some discrepancy between predictions of SBBN and observations of abundances. Various alternatives to SBBN include inhomogeneous nucleosynthesis, nucleosynthesis with antimatter, and nonstandard neutrino physics.
63 - T. Rauscher 2006
The work of Matsuura et al. [Phys. Rev. D 72, 123505 (2005); astro-ph/0507439] claims that heavy nuclei could have been produced in a combined p- and r-process in very high baryon density regions of an inhomogeneous big bang. However, they do not acc ount for observational constraints and previous studies which show that such high baryon density regions did not significantly contribute to big bang abundances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا