ترغب بنشر مسار تعليمي؟ اضغط هنا

Halo Star Lithium Depletion

104   0   0.0 ( 0 )
 نشر من قبل Gary Steigman
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The depletion of lithium during the pre-main sequence and main sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. In the past a wide range of possible depletion factors, ranging from minimal in standard (non-rotating) stellar models to as much as an order of magnitude in models including rotational mixing have been suggested. Using recent progress in the study of the angular momentum evolution of low mass stars, which now permits the construction of theoretical models that reproduce the angular momentum evolution of low mass open cluster stars, along with the observed distribution of initial angular momenta inferred from stellar rotation data in young open clusters, we study lithium depletion in main sequence halo stars. We predict a well-defined, nearly flat (in T_eff) halo lithium plateau with modest scatter and a small population of outliers. We also examine the relative depletions of 6Li and 7Li finding that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion. Using observational data to bound the 7Li depletion in main sequence halo stars, we find a maximum depletion of 0.4 dex is set by the observed dispersion and the 6Li/7Li depletion ratio, and a minimum depletion of 0.2 dex is required by both the presence of highly overdepleted halo stars and consistency with the solar and open cluster 7Li data. The cosmological implications of these bounds on the primordial abundance of 7Li are discussed. (Abridged)



قيم البحث

اقرأ أيضاً

139 - Erin Mentuch 2008
We estimate cluster ages from lithium depletion in five pre-main-sequence groups found within 100 pc of the Sun: TW Hydrae Association, Eta Chamaeleontis Cluster, Beta Pictoris Moving Group, Tucanae-Horologium Association and AB Doradus Moving Group. We determine surface gravities, effective temperatures and lithium abundances for over 900 spectra through least squares fitting to model-atmosphere spectra. For each group, we compare the dependence of lithium abundance on temperature with isochrones from pre-main-sequence evolutionary tracks to obtain model dependent ages. We find that the Eta Chamaelontis Cluster and the TW Hydrae Association are the youngest, with ages of 12+/-6 Myr and 12+/-8 Myr, respectively, followed by the Beta Pictoris Moving Group at 21+/-9 Myr, the Tucanae-Horologium Association at 27+/-11 Myr, and the AB Doradus Moving Group at an age of at least 45 Myr (where we can only set a lower limit since the models -- unlike real stars -- do not show much lithium depletion beyond this age). Here, the ordering is robust, but the precise ages depend on our choice of both atmospheric and evolutionary models. As a result, while our ages are consistent with estimates based on Hertzsprung-Russell isochrone fitting and dynamical expansion, they are not yet more precise. Our observations do show that with improved models, much stronger constraints should be feasible: the intrinsic uncertainties, as measured from the scatter between measurements from different spectra of the same star, are very low: around 10 K in effective temperature, 0.05 dex in surface gravity, and 0.03 dex in lithium abundance.
140 - Monique Spite 2015
The lithium abundance in turnoff stars of the old population of our Galaxy is remarkably constant in the metallicity interval -2.8textless{}[Fe/H] textless{}-2.0, defining a plateau. The Li abundance of these turnoff stars is clearly lower than the a bundance predicted by the primordial nucleosynthesis in the frame of the standard Big Bang nucleosynthesis. Different scenarios have been proposed for explaining this discrepancy, along with the very low scatter of the lithium abundance around the plateau. The recently identified very high velocity star, WISE J072543.88-235119.7 appears to belong to the old Galactic population, and appears to be an extreme halo star on a bound, retrograde Galactic orbit. In this paper, we study the abundance ratios and, in particular the lithium abundance, in this star. The available spectra (ESO-Very Large Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined.The abundance ratios in WISE J072543.88-235119.7 are those typical of old turnoff stars. The lithium abundance in this star ~is in close agreement with the lithium abundance found in the metal-poor turnoff stars located at moderate distance from the Sun. This high velocity star confirms, in an extreme case, that the very small scatter of the lithium plateau persists independent of the dynamic and kinematic properties of the stars.
61 - Y.Q.Chen 2001
We present a survey of lithium abundances in 185 main- sequence field stars with Teff between 5600 and 6600 K and [Fe/H] from -1.4 to +0.2 based on high-resolution spectra of 130 stars and a reanalysis of data from Lambert et al. (1991). The survey t akes advantage of improved ways of determining effective temperature, metallicity, mass and age, offering an opportunity to investigate the behaviour of Li as a function of these parameters. An interesting result is the presence of a large gap in the Li-Teff plane, which distinguishes `Hyades-like, Li-dip stars from other stars. These Li-dip stars have a well-defined mass, which decreases with metallicity. Stars above the gap, when divided into four metallicity groups, may show a correlation between Li abundance and stellar mass, but with a large dispersion that cannot be explained by observational errors or differences in metallicity and age, which ranges from 1.5 to 15 Gyr. This suggests that Li depletion occurs early in stellar life and that other parameters, e.g. initial rotation velocity and/or the rate of angular momentum loss, affect the degree of depletion. A comparison of the distribution of stars in the Li-[Fe/H] plane with evolutionary models of Romano et al. (1999) suggests that novae are a major source for the Li production in the Galactic disk.
Astrometry and photometry from {it Gaia} and spectroscopic data from the {it Gaia}-ESO Survey (GES) are used to identify the lithium depletion boundary (LDB) in the young cluster NGC 2232. A specialised spectral line analysis procedure was used to re cover the signature of undepleted lithium in very low luminosity cluster members. An age of $38pm 3$ Myr is inferred by comparing the LDB location in absolute colour-magnitude diagrams (CMDs) with the predictions of standard models. This is more than twice the age derived from fitting isochrones to low-mass stars in the CMD with the same models. Much closer agreement between LDB and CMD ages is obtained from models that incorporate magnetically suppressed convection or flux-blocking by dark, magnetic starspots. The best agreement is found at ages of $45-50$,Myr for models with high levels of magnetic activity and starspot coverage fractions $>50$ per cent, although a uniformly high spot coverage does not match the CMD well across the full luminosity range considered.
We compute rotating 1D stellar evolution models that include a modified temperature gradient in convection zones and criterion for convective instability inspired by rotating 3D hydrodynamical simulations performed with the MUSIC code. In those 3D si mulations we found that convective properties strongly depend on the Solberg-H{o}iland criterion for stability. We therefore incorporated this into 1D stellar evolution models by replacing the usual Schwarzschild criterion for stability and also modifying the temperature gradient in convection zones. We computed a grid of 1D models between 0.55 and 1.2 stellar masses from the pre-main sequence to the end of main sequence in order to study the problem of lithium depletion in low-mass main sequence stars. This is an ideal test case because many of those stars are born as fast rotators and the rate of lithium depletion is very sensitive to the changes in the stellar structure. Additionally, observations show a correlation between slow rotation and lithium depletion, contrary to expectations from standard models of rotationally driven mixing. By suppressing convection, and therefore decreasing the temperature at the base of the convective envelope, lithium burning is strongly quenched in our rapidly rotating models to an extent sufficient to account for the lithium spread observed in young open clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا