ﻻ يوجد ملخص باللغة العربية
We compute rotating 1D stellar evolution models that include a modified temperature gradient in convection zones and criterion for convective instability inspired by rotating 3D hydrodynamical simulations performed with the MUSIC code. In those 3D simulations we found that convective properties strongly depend on the Solberg-H{o}iland criterion for stability. We therefore incorporated this into 1D stellar evolution models by replacing the usual Schwarzschild criterion for stability and also modifying the temperature gradient in convection zones. We computed a grid of 1D models between 0.55 and 1.2 stellar masses from the pre-main sequence to the end of main sequence in order to study the problem of lithium depletion in low-mass main sequence stars. This is an ideal test case because many of those stars are born as fast rotators and the rate of lithium depletion is very sensitive to the changes in the stellar structure. Additionally, observations show a correlation between slow rotation and lithium depletion, contrary to expectations from standard models of rotationally driven mixing. By suppressing convection, and therefore decreasing the temperature at the base of the convective envelope, lithium burning is strongly quenched in our rapidly rotating models to an extent sufficient to account for the lithium spread observed in young open clusters.
We have used fibre spectroscopy to establish cluster membership and examine pre-main-sequence (PMS) lithium depletion for low-mass stars (spectral types F to M) in the sparse young (~30 Myr) cluster IC 4665. We present a filtered candidate list of 40
Aims: We study the influence of rotation and disc lifetime on lithium depletion of pre-main sequence (PMS) solar-type stars. Methods: The impact of rotational mixing and of the hydrostatic effects of rotation on lithium abundances are investigated by
We present an analysis of K2 light curves (LCs) from Campaigns 4 and 13 for members of the young ($sim$3 Myr) Taurus association, in addition to an older ($sim$30 Myr) population of stars that is largely in the foreground of the Taurus molecular clou
We show that non-magnetic models for the evolution of pre-main-sequence (PMS) stars *cannot* simultaneously describe the colour-magnitude diagram (CMD) and the pattern of lithium depletion seen in the cluster of young, low-mass stars surrounding $gam
The fundamental properties of low-mass stars are not as well understood as those of their more massive counterparts. The best method for constraining these properties, especially masses and radii, is to study eclipsing binary systems, but only a smal