ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic Molecular Clouds from Supersonic MHD and Non-LTE Radiative Transfer Calculations

50   0   0.0 ( 0 )
 نشر من قبل Paolo Padoan
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of molecular clouds is characterized by supersonic random motions in the presence of a magnetic field. We study this situation using numerical solutions of the three-dimensional compressible magneto-hydrodynamic (MHD) equations in a regime of highly supersonic random motions. The non-LTE radiative transfer calculations are performed through the complex density and velocity fields obtained as solutions of the MHD equations, and more than 5x10^5 synthetic molecular spectra are obtained. We use a numerical flow without gravity or external forcing. The flow is super-Alfvenic and corresponds to model A of Padoan and Nordlund (1997). Synthetic data consist of sets of 90x90 synthetic spectra with 60 velocity channels, in five molecular transitions: J=1-0 and J=2-1 for 12CO and 13CO, and J=1-0 for CS. Though we do not consider the effects of stellar radiation, gravity, or mechanical energy input from discrete sources, our models do contain the basic physics of magneto-fluid dynamics and non-LTE radiation transfer and are therefore more realistic than previous calculations. As a result, these synthetic maps and spectra bear a remarkable resemblance to the corresponding observations of real clouds.


قيم البحث

اقرأ أيضاً

We describe PyRaTE, a new, non-local thermodynamic equilibrium (non-LTE) line radiative transfer code developed specifically for post-processing astrochemical simulations. Population densities are estimated using the escape probability method. When c omputing the escape probability, the optical depth is calculated towards all directions with density, molecular abundance, temperature and velocity variations all taken into account. A very easy-to-use interface, capable of importing data from simulations outputs performed with all major astrophysical codes, is also developed. The code is written in Python using an `embarrassingly parallel strategy and can handle all geometries and projection angles. We benchmark the code by comparing our results with those from RADEX (van der Tak et al. 2007) and against analytical solutions and present case studies using hydrochemical simulations. The code is available on GitHub (https://github.com/ArisTr/PyRaTE).
88 - Jin Koda 2005
New 13CO data from the BU-FCRAO Milky Way Galactic Ring Survey (GRS) are analyzed to understand the shape and internal motions of molecular clouds. For a sample of more than five hundred molecular clouds, we find that they are preferentially elongate d along the Galactic plane. On the other hand, their spin axes are randomly oriented. We therefore conclude that the elongation is not supported by internal spin but by internal velocity anisotropy. It has been known that some driving mechanisms are necessary to sustain the supersonic velocity dispersion within molecular clouds. The mechanism for generating the velocity dispersion must also account for the preferred elongation. This excludes some driving mechanisms, such as stellar winds and supernovae, because they do not produce the systemic elongation along the Galactic plane. Driving energy is more likely to come from large scale motions, such as the Galactic rotation.
Resonance spectral lines such as H I Ly {alpha}, Mg II h&k, and Ca II H&K that form in the solar chromosphere are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines includ ing both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is however indispensable for accurate diagnostics of the chromosphere. We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-LTE radiative transfer code. To make the method memory-friendly, we use the hybrid approximation of Leenaarts et al. (2012) for the redistribution integral. To make it fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the h&k lines and H I with the Ly {alpha} line treated in PRD. A typical 3D PRD solution can be obtained in a model atmosphere with $252 times 252 times 496$ coordinate points in 50 000--200 000 CPU hours, which is a factor ten slower than computations assuming complete redistribution. We illustrate the importance of the joint action of PRD and 3D effects for the Mg II h&k lines for disk-center intensities as well as the center-to-limb variation. The proposed method allows simulating PRD lines in time series of radiation-MHD models in order to interpret observations of chromospheric lines at high spatial resolution.
Jets and outflows from young stellar objects are proposed candidates to drive supersonic turbulence in molecular clouds. Here, we present the results from multi-dimensional jet simulations where we investigate in detail the energy and momentum deposi tion from jets into their surrounding environment and quantify the character of the excited turbulence with velocity probability density functions. Our study include jet--clump interaction, transient jets, and magnetised jets. We find that collimated supersonic jets do not excite supersonic motions far from the vicinity of the jet. Supersonic fluctuations are damped quickly and do not spread into the parent cloud. Instead subsonic, non-compressional modes occupy most of the excited volume. This is a generic feature which can not be fully circumvented by overdense jets or magnetic fields. Nevertheless, jets are able to leave strong imprints in their cloud structure and can disrupt dense clumps. Our results question the ability of collimated jets to sustain supersonic turbulence in molecular clouds.
88 - A. Tritsis , K. Tassis 2016
Dust continuum and molecular observations of the low column density parts of molecular clouds have revealed the presence of elongated structures which appear to be well aligned with the magnetic field. These so-called striations are usually assumed t o be streams that flow towards or away from denser regions. We perform ideal magnetohydrodynamic (MHD) simulations adopting four models that could account for the formation of such structures. In the first two models striations are created by velocity gradients between ambient, parallel streamlines along magnetic field lines. In the third model striations are formed as a result of a Kelvin-Helmholtz instability perpendicular to field lines. Finally, in the fourth model striations are formed from the nonlinear coupling of MHD waves due to density inhomogeneities. We assess the validity of each scenario by comparing the results from our simulations with previous observational studies and results obtained from the analysis of CO (J = 1 - 0) observations from the Taurus molecular cloud. We find that the first three models cannot reproduce the density contrast and the properties of the spatial power spectrum of a perpendicular cut to the long axes of striations. We conclude that the nonlinear coupling of MHD waves is the most probable formation mechanism of striations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا