ترغب بنشر مسار تعليمي؟ اضغط هنا

The Absolute Magnitude of RR Lyrae Stars Derived from the Hipparcos Catalogue

115   0   0.0 ( 0 )
 نشر من قبل Tsujimoto Takuji
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present determination of the absolute magnitude $M_V(RR)$ of RR Lyrae stars is twofold, relying upon Hipparcos proper motions and trigonometric parallaxes separately. First, applying the statistical parallax method to the proper motions, we find $<M_V(RR)>=0.69pm0.10$ for 99 halo RR Lyraes with $<$[Fe/H]$>$ =--1.58. Second, applying the Lutz-Kelker correction to the RR Lyrae HIP95497 with the most accurately measured parallax, we obtain $M_V(RR)$=(0.58--0.68)$^{+0.28}_{-0.31}$ at [Fe/H]=--1.6. Furthermore, allowing full use of low accuracy and negative parallaxes as well for 125 RR Lyraes with -- 2.49$leq$[Fe/H]$leq$0.07, the maximum likelihood estimation yields the relation, $M_V(RR)$=(0.59$pm$0.37)+(0.20$pm$0.63)([Fe/H]+1.60), which formally agrees with the recent preferred relation. The same estimation yields again $<M_V(RR)>$ = $0.65pm0.33$ for the 99 halo RR Lyraes. Although the formal errors in the latter three parallax estimates are rather large, all of the four results suggest the fainter absolute magnitude, $M_V(RR)$$approx$0.6--0.7 at [Fe/H]=--1.6. The present results still provide the lower limit on the age of the universe which is inconsistent with a flat, matter-dominated universe and current estimates of the Hubble constant.



قيم البحث

اقرأ أيضاً

We investigate the properties of K0V stars with Hipparcos parallaxes and spectral types taken from the Michigan Spectral Survey. The sample of 200 objects allows the empirical investigation of the magnitude selection (Malmquist) bias, which appears c learly present. By selecting those objects that are not affected by bias, we find a mean absolute magnitude of Mv~5.7, a downward revision from 5.9 mag. listed in Schmidt-Kaler (1982). Some objects have absolute magnitudes far brighter than Mv~5.7, and it is suggested that these objects (~20% of the total sample) are K0IV stars which may have been mis-classified as a K0V star. The presence of the Malmquist bias in even this high quality sample suggests that no sample can be expected to be bias-free.
We present new statistical parallax solutions for the absolute magnitude and kinematics of RR Lyrae stars. New proper motion, radial velocity, and abundance data are used; the new data set is 50% larger, and of higher quality, than previously availab le data sets. Based on an a priori kinematic study, we separate the stars into halo and thick disk sub-populations. Statistical parallax solutions on these sub-samples yield M_V(RR) = +0.71 +/- 0.12 at <[Fe/H]> = -1.61 for the halo (162 stars), and M_V(RR) = +0.79 +/- 0.30 at <[Fe/H]> = -0.76 for the thick disk (51 stars). The solutions yield kinematic parameters (solar motion and velocity ellipsoid) in good agreement with estimates of the halo and thick disk kinematics derived from both RR Lyrae stars and other stellar tracers. Monte Carlo simulations indicate that the solutions are accurate, and that the errors may be smaller than the estimates above. The simulations reveal a small bias in the disk solutions, and appropriate corrections are derived. The large uncertainty in the disk M_V(RR) prevents ascertaining the slope of the M_V(RR)-[Fe/H] relation. We find that (1) the distance to the Galactic Center is 7.6 +/- 0.4 kpc; (2) the mean age of the 17 oldest Galactic globular clusters is 16.5 _{-1.9}^{+2.1} Gyr; and (3) the distance modulus of the LMC is 18.28 +/- 0.13 mag. Estimates of H_0 which are based on an LMC distance modulus of 18.50 (e.g., Cepheid studies) increase by 10% if they are recalibrated to match our LMC distance modulus.
RR Lyrae stars for a long time had the reputation of being rather simple pulsators, but the advent of high-precision space photometry has meanwhile changed this picture dramatically. This article summarizes the results obtained for two remarkable Bla zhko RR Lyrae stars and discusses how our view of RR Lyrae stars has changed since the availability of ultra-precise satellite photometry as it is obtained by CoRoT and Kepler. Both stars, CoRoT 105288363 and V445 Lyrae, show a multitude of phenomena that were impossible to observe from the ground, either because of the small amplitude of the effect, or because uninterrupted long-term monitoring was required for a detection. Not only was it found that strong and irregular cycle-to-cycle changes of the Blazhko effect can occur, and that seemingly chaotic phenomena need to be accounted for when modeling the Blazhko effect, but also a rich spectrum of low-amplitude frequencies was detected in addition to the fundamental radial pusation in RRab stars. The so-called period doubling phenomenon, higher radial overtones and possibly also non-radial modes make RR Lyrae stars more multifaceted than previously thought. This article presents the various aspects of irregularity of the Blazhko effect, questioning its long-standing definition as a periodic modulation, and also discusses the low-amplitude pulsation signatures that had been hidden in the noise of observations for centuries.
We characterize the absolute magnitudes and colors of RR Lyrae stars in the globular cluster M5 in the ugriz filter system of the Dark Energy Camera (DECam). We provide empirical Period-Luminosity (P-L) relationships in all 5 bands based on 47 RR Lyr ae stars of the type ab and 14 stars of the type c. The P-L relationships were found to be better constrained for the fundamental mode RR Lyrae stars in the riz passbands, with dispersion of 0.03, 0.02 and 0.02 magnitudes, respectively. The dispersion of the color at minimum light was found to be small, supporting the use of this parameter as a means to obtain accurate interstellar extinctions along the line of sight up to the distance of the RR Lyrae star. We found a trend of color at minimum light with pulsational period that, if taken into account, brings the dispersion in color at minimum light to < 0.016 magnitudes for the (r-i), (i-z), and (r-z) colors. These calibrations will be very useful for using RR Lyrae stars from DECam observations as both standard candles for distance determinations and color standards for reddening measurements.
The most common methods to derive the distance to globular clusters using RR Lyrae variables are reviewed, with a special attention to those that have experienced significant improvement in the past few years. From the weighted average of these most recent determinations the absolute magnitude of the RR Lyrae stars at [Fe/H]=-1.5 is Mv = 0.59 +/- 0.03 mag, corresponding to a distance modulus for the LMC (m-M)o = 18.48 +/- 0.05.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا