ﻻ يوجد ملخص باللغة العربية
The present determination of the absolute magnitude $M_V(RR)$ of RR Lyrae stars is twofold, relying upon Hipparcos proper motions and trigonometric parallaxes separately. First, applying the statistical parallax method to the proper motions, we find $<M_V(RR)>=0.69pm0.10$ for 99 halo RR Lyraes with $<$[Fe/H]$>$ =--1.58. Second, applying the Lutz-Kelker correction to the RR Lyrae HIP95497 with the most accurately measured parallax, we obtain $M_V(RR)$=(0.58--0.68)$^{+0.28}_{-0.31}$ at [Fe/H]=--1.6. Furthermore, allowing full use of low accuracy and negative parallaxes as well for 125 RR Lyraes with -- 2.49$leq$[Fe/H]$leq$0.07, the maximum likelihood estimation yields the relation, $M_V(RR)$=(0.59$pm$0.37)+(0.20$pm$0.63)([Fe/H]+1.60), which formally agrees with the recent preferred relation. The same estimation yields again $<M_V(RR)>$ = $0.65pm0.33$ for the 99 halo RR Lyraes. Although the formal errors in the latter three parallax estimates are rather large, all of the four results suggest the fainter absolute magnitude, $M_V(RR)$$approx$0.6--0.7 at [Fe/H]=--1.6. The present results still provide the lower limit on the age of the universe which is inconsistent with a flat, matter-dominated universe and current estimates of the Hubble constant.
We investigate the properties of K0V stars with Hipparcos parallaxes and spectral types taken from the Michigan Spectral Survey. The sample of 200 objects allows the empirical investigation of the magnitude selection (Malmquist) bias, which appears c
We present new statistical parallax solutions for the absolute magnitude and kinematics of RR Lyrae stars. New proper motion, radial velocity, and abundance data are used; the new data set is 50% larger, and of higher quality, than previously availab
RR Lyrae stars for a long time had the reputation of being rather simple pulsators, but the advent of high-precision space photometry has meanwhile changed this picture dramatically. This article summarizes the results obtained for two remarkable Bla
We characterize the absolute magnitudes and colors of RR Lyrae stars in the globular cluster M5 in the ugriz filter system of the Dark Energy Camera (DECam). We provide empirical Period-Luminosity (P-L) relationships in all 5 bands based on 47 RR Lyr
The most common methods to derive the distance to globular clusters using RR Lyrae variables are reviewed, with a special attention to those that have experienced significant improvement in the past few years. From the weighted average of these most