ترغب بنشر مسار تعليمي؟ اضغط هنا

RR Lyrae stars seen from space

142   0   0.0 ( 0 )
 نشر من قبل Elisabeth Guggenberger
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

RR Lyrae stars for a long time had the reputation of being rather simple pulsators, but the advent of high-precision space photometry has meanwhile changed this picture dramatically. This article summarizes the results obtained for two remarkable Blazhko RR Lyrae stars and discusses how our view of RR Lyrae stars has changed since the availability of ultra-precise satellite photometry as it is obtained by CoRoT and Kepler. Both stars, CoRoT 105288363 and V445 Lyrae, show a multitude of phenomena that were impossible to observe from the ground, either because of the small amplitude of the effect, or because uninterrupted long-term monitoring was required for a detection. Not only was it found that strong and irregular cycle-to-cycle changes of the Blazhko effect can occur, and that seemingly chaotic phenomena need to be accounted for when modeling the Blazhko effect, but also a rich spectrum of low-amplitude frequencies was detected in addition to the fundamental radial pusation in RRab stars. The so-called period doubling phenomenon, higher radial overtones and possibly also non-radial modes make RR Lyrae stars more multifaceted than previously thought. This article presents the various aspects of irregularity of the Blazhko effect, questioning its long-standing definition as a periodic modulation, and also discusses the low-amplitude pulsation signatures that had been hidden in the noise of observations for centuries.



قيم البحث

اقرأ أيضاً

106 - Emese Plachy , Robert Szabo 2020
The unprecedented photometric precision along with the quasi-continuous sampling provided by the Kepler space telescope revealed new and unpredicted phenomena that reformed and invigorated RR Lyrae star research. The discovery of period doubling and the wealth of low-amplitude modes enlightened the complexity of the pulsation behavior and guided us towards nonlinear and nonradial studies. Searching and providing theoretical explanation for these newly found phenomena became a central question, as well as understanding their connection to the oldest enigma of RR Lyrae stars, the Blazhko effect. We attempt to summarize the highest impact RR Lyrae results based on or inspired by the data of the Kepler space telescope both from the nominal and the K2 missions. Besides the three most intriguing topics, the period doubling, the low-amplitude modes, and the Blazhko effect, we also discuss the challenges of Kepler photometry that played a crucial role in the results. The secrets of these amazing variables, uncovered by Kepler, keep the theoretical, ground-based and space-based research inspired in the post-Kepler era, since light variation of RR Lyrae stars is still not completely understood.
137 - J.M. Nemec 2011
This paper summarizes the main results of our recent study of the non-Blazhko RR Lyrae stars observed with the Kepler space telescope. These stars offer the opportunity for studying the stability of the pulsations of RR Lyrae stars and for providing a reference against which the Blazhko RR Lyrae stars can be compared. Of particular interest is the stability of the low-dispersion (sigma < 1mmag) light curves constructed from ~18,000 long-cadence (30-min) and (for FN Lyr and AW Dra) the ~150,000 short-cadence (1-min) photometric data points. Fourier-based [Fe/H] values and other physical characteristics are also derived. When the observed periods are compared with periods computed with the Warsaw non-linear convective pulsation code better agreement is achieved assuming pulsational L and M values rather than the (higher) evolutionary L and M values.
The study of RR Lyrae stars has recently been invigorated thanks to the long, uninterrupted, ultra-precise time series data provided by the Kepler and CoRoT space telescopes. We give a brief overview of the new observational findings concentrating on the connection between period doubling and the Blazhko modulation, and the omnipresence of additional periodicities in all RR Lyrae subtypes, except for non-modulated RRab stars. Recent theoretical results demonstrate that if more than two modes are present in a nonlinear dynamical system such as a high-amplitude RR Lyrae star, the outcome is often an extremely intricate dynamical state. Thus, based on these discoveries, an underlying picture of complex dynamical interactions between modes is emerging which sheds new light on the century-old Blazhko-phenomenon, as well. New directions of theoretical efforts, like multi-dimensional hydrodynamical simulations, future space photometric missions and detailed spectroscopic investigations will pave the way towards a more complete understanding of the atmospheric and pulsation dynamics of these enigmatic touchstone objects.
We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity ampl itudes) that are reddening and distance independent. Fundamental mode RRL in six dwarf spheroidals and eleven ultra faint dwarf galaxies (1,300) show a Gaussian period distribution well peaked around a mean period of <Pab>=0.610+-0.001 days (sigma=0.03). The Halo RRL (15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dwarf spheroidals apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P< 0.48 days and Av> 0.75mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered eighteen globulars covering a broad range in metallicity (-2.3< [Fe/H]< -1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal--rich than [Fe/H] -1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of 50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.
185 - R. Szabo , Z. Kollath , L. Molnar 2011
The origin of the conspicuous amplitude and phase modulation of the RR Lyrae pulsation - known as the Blazhko effect - is still a mystery after more than 100 years of its discovery. With the help of the Kepler space telescope we have revealed a new a nd unexpected phenomenon: period doubling in RR Lyr - the eponym and prototype of its class - as well as in other Kepler Blazhko RR Lyrae stars. We have found that period doubling is directly connected to the Blazhko modulation. Furthermore, with hydrodynamic model calculations we have succeeded in reproducing the period doubling and proved that the root cause of this effect is a high order resonance (9:2) between the fundamental mode and the 9th radial overtone, which is a strange mode. We discuss the implications of these recent findings on our understanding of the century-old Blazhko problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا