ﻻ يوجد ملخص باللغة العربية
We consider the evolutionary state of the black-hole X-ray source GRO J1655-40 in the context of its transient nature. Recent optical observations show that the donor in GRO J1655-40 is an intermediate-mass star (~ 2.3 solar masses) crossing the Hertzsprung gap. Usually in such systems the donors radius expansion drives a near-Eddington or super-Eddington mass transfer rate which would sustain a persistently bright accretion disk. We show that GRO J1655-40 is close to a narrow parameter range where disk instabilities can occur. This range corresponds to a short-lived evolutionary stage where the secondarys radius expansion stalls (or reverses), with a correspondingly lower mass transfer rate. If GRO J1655-40 belongs to this class of transients the predicted accretion rates imply large populations of luminous persistent and transient sources, which are not seen in X-rays. The transient nature of the related system GRS 1915+105 may reflect spectral variations in a bolometrically persistent source rather than a genuine luminosity increase.
Context: The detection of overabundances of $alpha$-elements and lithium in the secondary star of a black-hole binary provides important insights about the formation of a stellar-mass black-hole. $alpha$-enhancement might theoretically also be the re
We report the results of multiwavelength observations of the superluminal X-ray transient GRO J1655-40 during and following the prominent hard X-ray outburst of March-April 1995. GRO J1655-40 was continuously monitored by BATSE on board CGRO, and rep
The Galactic black-hole binary GRO J1655$-$40 was observed with Suzaku on 2005 September 22--23, for a net exposure of 35 ks with the X-ray Imaging Spectrometer (XIS) and 20 ks with the Hard X-ray Detector (HXD). The source was detected over a broad
We report the identification and study of an unusual soft state of the black hole low-mass X-ray binary GRO J1655-40, observed during its 2005 outburst by the Rossi X-ray Timing Explorer. Chandra X-ray grating observations have revealed a high mass-o
We have analysed four ASCA observations (1994--1995, 1996--1997) and three XMM-Newton observations (2005) of this source, in all of which the source is in high/soft state. We modeled the continuum spectra with relativistic disk model kerrbb, estimate