ترغب بنشر مسار تعليمي؟ اضغط هنا

The remarkable timing properties of a `hypersoft state in GRO J1655-40

144   0   0.0 ( 0 )
 نشر من قبل Phil Uttley
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the identification and study of an unusual soft state of the black hole low-mass X-ray binary GRO J1655-40, observed during its 2005 outburst by the Rossi X-ray Timing Explorer. Chandra X-ray grating observations have revealed a high mass-outflow accretion disc wind in this state, and we show that the broadband X-ray spectrum is remarkably similar to that observed in the so-called `hypersoft state of the high mass X-ray binary Cyg X-3, which possesses a strong stellar wind from a Wolf-Rayet secondary. The power-spectral density (PSD) of GRO J1655-40 shows a bending power-law shape, similar to that of canonical soft states albeit with larger fractional rms. However, the characteristic bend-frequency of the PSD is strongly correlated with the X-ray flux, such that the bend-frequency increases by two decades for less than a factor 2 increase in flux. The strong evolution of PSD bend-frequency for very little change in flux or X-ray spectral shape seems to rule out the suppression of high-frequency variability by scattering in the wind as the origin of the PSD bend. Instead, we suggest that the PSD shape is intrinsic to the variability process and may be linked to the evolution of the scale-height in a slim disc. An alternative possibility is that variability is introduced by variable absorption and scattering in the wind. We further argue that the hypersoft state in GRO J1655-40 and Cyg X-3 is associated with accretion close to or above the Eddington limit.



قيم البحث

اقرأ أيضاً

65 - J. Neilsen , F. Rahoui , J. Homan 2016
During its 2005 outburst, GRO J1655-40 was observed at high spectral resolution with the Chandra HETGS, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind -- apparently too hot, too dense, and too close t o the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). But this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley & Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on the orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this hypersoft state are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.
Context: The detection of overabundances of $alpha$-elements and lithium in the secondary star of a black-hole binary provides important insights about the formation of a stellar-mass black-hole. $alpha$-enhancement might theoretically also be the re sult of pollution by the nucleosynthesis occurring during an outburst, or through spallation by the jet. Aims: We study the abundances, and their possible variations with time, in the secondary star of the runaway black-hole binary GRO J1655--40, in order to understand their origin. Methods: We present a detailed comparison between a Keck spectrum obtained in 1998 found in the literature, archival VLT-UVES data taken in 2004 and new VLT-UVES spectra obtained early 2006. We carefully determine the equivalent widths of different $alpha$-elements (Mg, O, Ti, S and Si) with their associated uncertainty. We use the well-studied comparison star HD 156098 as well as synthetic spectra to match the spectrum of GRO J1655--40 in order to determine the abundances of these elements. Results: We see no significant variations of equivalent widths with time. Our fit using HD 156098 reveals that there is significant overabundance of oxygen in all our spectra, but no overabundances of any of the other $alpha$-elements. Finally, we do not detect the lithium line at 6707 AA. Conclusions: We show that there is no detected pollution in GRO J1655--40 after the burst in 2005. Moreover, we argue that uncertainties in the equivalent widths were previously underestimated by a factor of $sim$3. Consequently, our results challenge the existence of general overabundances of $alpha$-elements observed in this galactic black-hole binary, and thus the accepted interpretation that they are of supernova origin. The physical cause of the overabundance of oxygen remains unclear.
During its 2005 outburst, GRO J1655-40 was observed twice with the Chandra High Energy Transmission Grating Spectrometer; the second observation revealed a spectrum rich with ionized absorption lines from elements ranging from O to Ni (Miller et al. 2006a, 2008; Kallman et al. 2009), indicative of an outflow too dense and too ionized to be driven by radiation or thermal pressure. To date, this spectrum is the only definitive evidence of an ionized wind driven off the accretion disk by magnetic processes in a black hole X-ray binary. Here we present our detailed spectral analysis of the first Chandra observation, nearly three weeks earlier, in which the only signature of the wind is the Fe XXVI absorption line. Comparing the broadband X-ray spectra via photoionization models, we argue that the differences in the Chandra spectra cannot possibly be explained by the changes in the ionizing spectrum, which implies that the properties of the wind cannot be constant throughout the outburst. We explore physical scenarios for the changes in the wind, which we suggest may begin as a hybrid MHD/thermal wind, but evolves over the course of weeks into two distinct outflows with different properties. We discuss the implications of our results for the links between the state of the accretion flow and the presence of transient disk winds.
104 - Ulrich Kolb 1997
We consider the evolutionary state of the black-hole X-ray source GRO J1655-40 in the context of its transient nature. Recent optical observations show that the donor in GRO J1655-40 is an intermediate-mass star (~ 2.3 solar masses) crossing the Hert zsprung gap. Usually in such systems the donors radius expansion drives a near-Eddington or super-Eddington mass transfer rate which would sustain a persistently bright accretion disk. We show that GRO J1655-40 is close to a narrow parameter range where disk instabilities can occur. This range corresponds to a short-lived evolutionary stage where the secondarys radius expansion stalls (or reverses), with a correspondingly lower mass transfer rate. If GRO J1655-40 belongs to this class of transients the predicted accretion rates imply large populations of luminous persistent and transient sources, which are not seen in X-rays. The transient nature of the related system GRS 1915+105 may reflect spectral variations in a bolometrically persistent source rather than a genuine luminosity increase.
127 - S. Luketic 2010
We present the results of hydrodynamical simulations of the disk photosphere irradiated by strong X-rays produced in the inner most part of the disk. As expected, the irradiation heats the photosphere and drives a thermal wind. To apply our results t o the well-studied X-ray transient source GRO J1655-40, we adopted the observed mass of its black hole, and the observed properties of its X-ray radiation. To compare the results with the observations, we also computed transmitted X-ray spectra based on the wind solution. Our main finding is: the density of the fast moving part of the wind is more than one order of magnitude lower than that inferred from the observations. Consequently, the model fails to predict spectra with line absorption as strong and as blueshifted as those observed. However, despite the thermal wind being weak and Compton thin, the ratio between the mass-loss rate and the mass accretion rate is about seven. This high ratio is insensitive to the accretion luminosity, in the limit of lower luminosities. Most of the mass is lost from the disk between 0.07 and 0.2 of the Compton radius. We discovered that beyond this range the wind solution is self-similar. In particular, soon after it leaves the disk, the wind flows at a constant angle with respect to the disk. Overall, the thermal winds generated in our comprehensive simulations do not match the wind spectra observed in GRO J1655-40. This supports the conclusion of Miller et al. and Kallman et al. that the wind in GRO J1655-40, and possibly other X-ray transients, may be driven by magnetic processes. This in turn implies that the disk wind carries even more material than our simulations predict and as such has a very significant impact on the accretion disk structure and dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا