ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Squashing Factors for Covariant Description of Magnetic Connectivity in the Solar Corona

79   0   0.0 ( 0 )
 نشر من قبل Viacheslav Titov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. S. Titov




اسأل ChatGPT حول البحث

The study of magnetic connectivity in the solar corona reveals a need to generalize the field line mapping technique to arbitrary geometry of the boundaries and systems of coordinates. Indeed, the global description of the connectivity in the corona requires the use of the photospheric and solar wind boundaries. Both are closed surfaces and therefore do not admit a global regular system of coordinates. At least two overlapping regular systems of coordinates for each of the boundaries are necessary in this case to avoid spherical-pole-like singularities in the coordinates of the footpoints. This implies that the basic characteristic of magnetic connectivity - the squashing degree or factor $Q$ of elemental flux tubes (Titov et al., 2002) - must be rewritten in covariant form. Such a covariant expression of $Q$ is derived in this work. The derived expression is very flexible and highly efficient for describing the global magnetic connectivity in the solar corona. In addition, a general expression for a new characteristic $Q_perp$ which defines a squashing of the flux tubes in the directions perpendicular to the field lines is determined. This new quantity makes it possible to filter out the quasi-separatrix layers whose large values of $Q$ are caused by a projection effect at the field lines nearly touching the photosphere. Thus, the value $Q_perp$ provides a much more precise description of the volumetric properties of the magnetic field structure. The difference between $Q$ and $Q_perp$ is illustrated by comparing their distributions for two configurations, one of which is the Titov-Demoulin (1999) model of a twisted magnetic field.

قيم البحث

اقرأ أيضاً

A general method for describing magnetic reconnection in arbitrary three-dimensional magnetic configurations is proposed. The method is based on the field-line mapping technique previously used only for the analysis of magnetic structure at a given t ime. This technique is extended here so as to analyze the evolution of magnetic structure. Such a generalization is made with the help of new dimensionless quantities called slip-squashing factors. Their large values define the surfaces that border the reconnected or to-be-reconnected magnetic flux tubes for a given period of time during the magnetic evolution. The proposed method is universal, since it assumes only that the time sequence of evolving magnetic field and the tangential boundary flows are known. The application of the method is illustrated for simple examples, one of which was considered previously by Hesse and coworkers in the framework of the general magnetic reconnection theory. The examples help us to compare these two approaches; they reveal also that, just as for magnetic null points, hyperbolic and cusp minimum points of a magnetic field may serve as favorable sites for magnetic reconnection. The new method admits a straightforward numerical implementation and provides a powerful tool for the diagnostics of magnetic reconnection in numerical models of solar-flare-like phenomena in space and laboratory plasmas.
In the present work we study evolution of magnetic helicity in the solar corona. We compare the rate of change of a quantity related to the magnetic helicity in the corona to the flux of magnetic helicity through the photosphere and find that the two rates are similar. This gives observational evidence that helicity flux across the photosphere is indeed what drives helicity changes in solar corona during emergence. For the purposes of estimating coronal helicity we neither assume a strictly linear force-free field, nor attempt to construct a non-linear force-free field. For each coronal loop evident in Extreme Ultraviolet (EUV) we find a best-matching line of a linear force-free field and allow the twist parameter alpha to be different for each line. This method was introduced and its applicability was discussed in Malanushenko et. al. (2009). The object of the study is emerging and rapidly rotating AR 9004 over about 80 hours. As a proxy for coronal helicity we use the quantity <alpha_i*L_i/2> averaged over many reconstructed lines of magnetic field. We argue that it is approximately proportional to flux-normalized helicity H/Phi^2, where H is helicity and Phi is total enclosed magnetic flux of the active region. The time rate of change of such quantity in the corona is found to be about 0.021 rad/hr, which is compatible with the estimates for the same region obtained using other methods Longcope et. al. (2007), who estimated the flux of normalized helicity of about 0.016 rad/hr.
82 - A. R. Yeates , G. Hornig 2016
By defining an appropriate field line helicity, we apply the powerful concept of magnetic helicity to the problem of global magnetic field evolution in the Suns corona. As an ideal-magnetohydrodynamic invariant, the field line helicity is a meaningfu l measure of how magnetic helicity is distributed within the coronal volume. It may be interpreted, for each magnetic field line, as a magnetic flux linking with that field line. Using magneto-frictional simulations, we investigate how field line helicity evolves in the non-potential corona as a result of shearing by large-scale motions on the solar surface. On open magnetic field lines, the helicity injected by the Sun is largely output to the solar wind, provided that the coronal relaxation is sufficiently fast. But on closed magnetic field lines, helicity is able to build up. We find that the field line helicity is non-uniformly distributed, and is highly concentrated in twisted magnetic flux ropes. Eruption of these flux ropes is shown to lead to sudden bursts of helicity output, in contrast to the steady flux along the open magnetic field lines.
Two of the most widely observed and yet most puzzling features of the Suns magnetic field are coronal loops that are smooth and laminar and prominences/filaments that are strongly sheared. These two features would seem to be quite unrelated in that t he loops are near their minimum-energy current-free state, whereas filaments are regions of high magnetic stress and intense electric currents. We argue that, in fact, these two features are inextricably linked in that both are due to a single process: the injection of magnetic helicity into the corona by photospheric motions and the subsequent evolution of this helicity by coronal reconnection. In this paper, we present numerical simulations of the response of a citet{Parker72} corona to photospheric driving motions that have varying degrees of helicity preference. We obtain four main conclusions: 1) in agreement with the helicity condensation model of citet{Antiochos13}, the inverse cascade of helicity by magnetic reconnection results in the formation of prominences/filaments localized about polarity inversion lines (PILs); 2) this same process removes most structure from the rest of the corona, resulting in smooth and laminar coronal loops; 3) the amount of remnant tangling in coronal loops is inversely dependent on the net helicity injected by the driving motions; and 4) the structure of the solar corona depends only on the helicity preference of the driving motions and not on their detailed time dependence. We discuss the implications of our results for high-resolution observations of the corona.
Understanding many physical processes in the solar atmosphere requires determination of the magnetic field in each atmospheric layer. However, direct measurements of the magnetic field in the Suns corona are difficult to obtain. Using observations wi th the Coronal Multi-channel Polarimeter, we have determined the spatial distribution of the plasma density in the corona, and the phase speed of the prevailing transverse magnetohydrodynamic waves within the plasma. We combine these measurements to map the plane-of-sky component of the global coronal magnetic field. The derived field strengths in the corona from 1.05 to 1.35 solar radii are mostly 1-4 Gauss. These results demonstrate the capability of imaging spectroscopy in coronal magnetic field diagnostics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا