ترغب بنشر مسار تعليمي؟ اضغط هنا

On using the CMB shift parameter in tests of models of dark energy

34   0   0.0 ( 0 )
 نشر من قبل Oystein Elgaroy
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The so-called shift parameter is related to the position of the first acoustic peak in the power spectrum anisotropies of the cosmic microwave background (CMB) anisotropies. It is an often used quantity in simple tests of dark energy models. However, the shift parameter is not directly measurable from the cosmic microwave background, and its value is usually derived from the data assuming a spatially flat cosmology with dark matter and a cosmological constant. Our aim in this paper is to evaluate the effectiveness of the shift parameter as a constraint on dark energy models, and the potential pitfalls in using it as a test of non-standard models of dark energy. By comparing to full CMB fits, we show that combining the shift parameter with the position of the first acoustic peak in the CMB power spectrum improves the accuracy of the test considerably.


قيم البحث

اقرأ أيضاً

We analyze the ability of galaxy and CMB lensing surveys to constrain massive neutrinos and new models of dark radiation. We present a Fisher forecast analysis for neutrino mass constraints with the LSST galaxy survey and the CMB S4 survey. A joint a nalysis of the three galaxy and shear 2-point functions, along with key systematics parameters and Planck priors, constrains the neutrino masses to $sum m_ u = 0.041,$eV at 1-$sigma$ level, comparable to constraints expected from Stage 4 CMB lensing. If low redshift information from upcoming spectroscopic surveys like DESI is included, the constraint becomes $sum m_ u = 0.032,$eV. These constraints are derived having marginalized over the number of relativistic species ($N_{rm eff}$), which is somewhat degenerate with the neutrino mass. We also explore the gain by combining LSST and CMB S4, that is, using the five relevant auto- and cross-correlations of the two datasets. We conclude that advances in modeling the nonlinear regime and the measurements of other parameters are required to ensure a neutrino mass detection. Using the same datasets, we explore the ability of LSST-era surveys to test nonstandard models with dark radiation. We find that if evidence for dark radiation is found from $N_{rm eff}$ measurements, the mass of the dark radiation candidate can be measured at a 1-$sigma$ level of $0.162,$eV for fermionic dark radiation, and $0.137,$eV for bosonic dark radiation, for $Delta N_{rm eff} = 0.15$. We also find that the NNaturalness model of Arkani-Hamed et al 2016, with extra light degrees of freedom, has a sub-percent effect on the power spectrum: even more ambitious surveys than the ones considered here will be needed to test such models.
We suggest to use the observationally measured and theoretically justified correlation between size and rotational velocity of galactic discs as a viable method to select a set of high redshift standard rods which may be used to explore the dark ener gy content of the universe via the classical angular-diameter test. Here we explore a new strategy for an optimal implementation of this test. We propose to use the rotation speed of high redshift galaxies as a standard size indicator and show how high resolution multi-object spectroscopy and ACS/HST high quality spatial images, may be combined to measure the amplitude of the dark energy density parameter, or to constrain the cosmic equation of state parameter for a smooth dark energy component. We evaluate how systematics may affect the proposed tests, and find that a linear standard rod evolution, causing galaxy dimensions to be up to 30% smaller at z=1.5, can be uniquely diagnosed, and will minimally bias the confidence level contours in the [Omega_Q, w] plane. Finally, we show how to derive, without a priori knowing the specific functional form of disc evolution, a cosmology-evolution diagram with which it is possible to establish a mapping between different cosmological models and the amount of galaxy disc/luminosity evolution expected at a given redshift.
The nature of the dark energy is still a mystery and several models have been proposed to explain it. Here we consider a phenomenological model for dark energy decay into photons and particles as proposed by Lima (J. Lima, Phys. Rev. D 54, 2571 (1996 )). He studied the thermodynamic aspects of decaying dark energy models in particular in the case of a continuous photon creation and/or disruption. Following his approach, we derive a temperature redshift relation for the CMB which depends on the effective equation of state $w_{eff}$ and on the adiabatic index $gamma$. Comparing our relation with the data on the CMB temperature as a function of the redshift obtained from Sunyaev-Zeldovich observations and at higher redshift from quasar absorption line spectra, we find $w_{eff}=-0.97 pm 0.034$, adopting for the adiabatic index $gamma=4/3$, in good agreement with current estimates and still compatible with $w_{eff}=-1$, implying that the dark energy content being constant in time.
The American Physical Societys Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the communitys long term aspirations. The sub-group Dark Energy and CMB prepared a series of papers expl aining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv.
133 - V. C. Busti , R. C. Santos 2011
In this Comment we discuss a recent analysis by Yu et al. [RAA 11, 125 (2011)] about constraints on the smoothness $alpha$ parameter and dark energy models using observational $H(z)$ data. It is argued here that their procedure is conceptually incons istent with the basic assumptions underlying the adopted Dyer-Roeder approach. In order to properly quantify the influence of the $H(z)$ data on the smoothness $alpha$ parameter, a $chi^2$-test involving a sample of SNe Ia and $H(z)$ data in the context of a flat $Lambda$CDM model is reanalyzed. This result is confronted with an earlier approach discussed by Santos et al. (2008) without $H(z)$ data. In the ($Omega_m, alpha$) plane, it is found that such parameters are now restricted on the intervals $0.66 leq alpha leq 1.0$ and $0.27 leq Omega_m leq 0.37$ within 95.4% confidence level (2$sigma$), and, therefore, fully compatible with the homogeneous case. The basic conclusion is that a joint analysis involving $H(z)$ data can indirectly improve our knowledge about the influence of the inhomogeneities. However, this happens only because the $H(z)$ data provide tighter constraints on the matter density parameter $Omega_m$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا