ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Energy and CMB

78   0   0.0 ( 0 )
 نشر من قبل Klaus Honscheid
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The American Physical Societys Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the communitys long term aspirations. The sub-group Dark Energy and CMB prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv.

قيم البحث

اقرأ أيضاً

We study a coupled quintessence model with pure momentum exchange and present the effects of such an interaction on the Cosmic Microwave Background (CMB) and matter power spectrum. For a wide range of negative values of the coupling parameter $beta$ structure growth is suppressed and the model can reconcile the tension between Cosmic Microwave Background observations and structure growth inferred from cluster counts. We find that this model is as good as $Lambda$CDM for CMB and baryon acoustic oscillation (BAO) data, while the addition of cluster data makes the model strongly preferred, improving the best-fit $chi^2$-value by more than $16$.
We use linear perturbation theory to study perturbations in dynamical dark energy models. We compare quintessence and tachyonic dark energy models with identical background evolution. We write the corresponding equations for different models in a for m that makes it easier to see that the two models are very hard to distinguish in the linear regime, especially for models with $(1 + w) ll 1$. We use Cosmic Microwave Background data and parametric representations for the two models to illustrate that they cannot be distinguished for the same background evolution with existing observations. Further, we constrain tachyonic models with the Planck data. We do this analysis for exponential and inverse square potentials and find that the intrinsic parameters of the potentials remain very weakly constrained. In particular, this is true in the regime allowed by low redshift observations.
In this article we compare a variety of well known dynamical dark energy models using the cosmic microwave background measurements from the 2018 Planck legacy and 2015 Planck data releases, the baryon acoustic oscillations measurements and the local measurements of $H_0$ obtained by the SH0ES (Supernovae, $H_0$, for the Equation of State of Dark energy) collaboration analysing the Hubble Space Telescope data. We discuss the alleviation of $H_0$ tension, that is obtained at the price of a phantom-like dark energy equation of state. We perform a Bayesian evidence analysis to quantify the improvement of the fit, finding that all the dark energy models considered in this work are preferred against the $Lambda$CDM scenario. Finally, among all the possibilities analyzed, the CPL model is the best one in fitting the data and solving the $H_0$ tension at the same time. However, unfortunately, this dynamical dark energy solution is not supported by the baryon acoustic oscillations (BAO) data, and the tension is restored when BAO data are included for all the models.
We seek to clarify the origin of constraints on the dark energy equation of state parameter from CMB lensing tomography, that is the combination of galaxy clustering and the cross-correlation of galaxies with CMB lensing in a number of redshift bins. In particular, we consider the two-point correlation functions which can be formed with a catalog of galaxy locations and photometric redshifts from the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) and CMB lensing maps from the CMB-S4 experiment. We focus on the analytic understanding of the origin of the constraints. Dark energy information in these data arises from the influence of three primary relationships: distance as a function of redshift (geometry), the amplitude of the power spectrum as a function of redshift (growth), and the power spectrum as a function of wavenumber (shape). We find that the effects from geometry and growth play a significant role and partially cancel each other out, while the shape effect is unimportant. We also show that Dark Energy Task Force (DETF) Figure of Merit (FoM) forecasts from the combination of LSST galaxies and CMB-S4 lensing are comparable to the forecasts from cosmic shear in the absence of the CMB lensing map, thus providing an important independent check. Compared to the forecasts with the LSST galaxies alone, combining CMB lensing and LSST clustering information (together with the primary CMB spectra) increases the FoM by roughly a factor of 3-4 in the optimistic scenario where systematics are fully under control. We caution that achieving these forecasts will likely require a full analysis of higher-order biasing, photometric redshift uncertainties, and stringent control of other systematic limitations, which are outside the scope of this work, whose primary purpose is to elucidate the physical origin of the constraints.
The nature of the dark energy is still a mystery and several models have been proposed to explain it. Here we consider a phenomenological model for dark energy decay into photons and particles as proposed by Lima (J. Lima, Phys. Rev. D 54, 2571 (1996 )). He studied the thermodynamic aspects of decaying dark energy models in particular in the case of a continuous photon creation and/or disruption. Following his approach, we derive a temperature redshift relation for the CMB which depends on the effective equation of state $w_{eff}$ and on the adiabatic index $gamma$. Comparing our relation with the data on the CMB temperature as a function of the redshift obtained from Sunyaev-Zeldovich observations and at higher redshift from quasar absorption line spectra, we find $w_{eff}=-0.97 pm 0.034$, adopting for the adiabatic index $gamma=4/3$, in good agreement with current estimates and still compatible with $w_{eff}=-1$, implying that the dark energy content being constant in time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا